Published in: Proc. of the 11th Int. Conf. on Database and Expert Systems Applications
(DEXA 2000), 4.-8. Sept. 2000, London, UK, Springer, LNCS 1873, 2000, pp. 203-211

Awareness in Interactive Database Applications

Giinther Specht!, Patrick Freiherr Harsdorf von Enderndorf?,
Thomas Kahabka3, and Franz Peterander?

b Institut fiir Informatik
Technische Universitat Miinchen
D-80290 Miinchen, Germany

2 Institut fiir Padagogische Psychologie und Empirische Padagogik
Ludwig Maximilian Universitdt Miinchen
D-80802 Miinchen, Germany

3 Exolution GmbH
Barerstr. 60, D-80799 Miinchen, Germany

specht@in.tum.de, patrick@harsdorf.de, kahabka®@exolution.de,
peterander@lrz.uni-muenchen.de

Abstract. This paper proposes a way to overcome locking problems in
interactive database applications by using awareness concepts. Parallel
long running editing sessions in interactive database applications often
cause locking conflicts. The occurrence of conflicts can be drastically
decreased by giving users means to be aware of each other and to com-
municate. This paper explains how this is done in database applications
for the social area, which are prone to locking conflicts due to their use
of relations with a very large number of attributes and long running
transactions. Additionally it shows how high scalability can be achieved
with the help of dynamic partitioning schemes. We present MAL, a de-
velopment system for interactive database applications, which allows to
develop applications that automatically include awareness-based locking
in a network environment.

1 Introduction

In multiuser database applications used for long-running editing sessions severe
locking problems are often encountered. The probability of these conflicts in-
creases with the number of attributes per tuple and the duration of editing
times.

We faced such problems in the development of applications for early child-
hood intervention centers, institutions providing help to children with develop-
ment problems. Such database applications assisting in social diagnostics use
relations containing up to 3000 attributes, all functionally dependent on the
patient-identifier. Since editing sessions for diagnostic reports often take over
one hour, locking conflicts are a problem.

We offer a new awareness-based approach to overcome these locking problems
and have implemented it in the MAL system, a database application development

203

system successfully used in the social area. MAL was developed by the MAL
Team, an interdisciplinary research group.

The rest of the paper is organized as follows. In the next section we introduce
the awareness-based locking approach of MAL. In section 3 we present techniques
to maintain high scalability. Section 4 is devoted to a closer description of the
MAL system. Conclusions are discussed in section 5.

2 Locking and Awareness

2.1 The Gallery

Instead of using strict isolation and anonymity between different users the con-
cept of making users aware of each other gives them a chance to cooperate.
The central element of the awareness interface is a floating window called “the
gallery” (figure 1). It informs users about which of their co-workers are currently
logged in, and which co-workers are using the same record as they do. It can
also be used to communicate with others by exchanging text messages.

Each co-worker is identified by a unique color in the gallery which is used to
draw the border of his or her image. This color is used to identify screen elements
locked by different users working on the same record.

d
3

Fig. 1. The “Gallery”

Making users aware of the virtual presence of their co-workers not only fa-
cilitates work but also creates a feeling of community. The MAL system uses
pictures instead of names — which would consume less screen real estate — , be-
cause pictures are recognized faster than words and can be perceived even if not
focused directly [7]. Also in a cooperative multiuser environment subjective sat-
isfaction, inclination to cooperate and efficiency increase as the users establish
a mental connection between the virtual representation of their co-workers and
the actual persons [1]. For that effect, pictures — being more personal and direct
— are more appropriate [6].

204

2.2 Locking and Awareness

In MAL applications locking has multiple functions: It is not just seen as a neces-
sary evil to gain consistency and prevent data loss. Rather, the visual representa-
tion of locks represents awareness information about the presence of co-workers.

While classical database applications are based on ACID transactions using
strict isolation and anonymity between different users, MAL’s awareness con-
cept surrenders the anonymity of locks. Whenever a user encounters a locked
attribute its value is visible along with the information about who is working
on that attribute. In addition we surrender the concept of isolation. If a user
stays on a user interface (UI) page with locked attributes, he can see the values
change with a certain delay as his team-mate modifies them. Thus we allow in-
formed dirty reads. The person currently working on that data can recognize the
virtual presence of his colleague, who just “stepped into the room”. The gallery
is extended and the fields in the form are colored correspondingly. Two MAL
users working on the same database record are very close to what is a shared
desktop in relazed WYSIWIS (what you see is what i see) mode [4]. The MAL
concept takes advantage of the fact that people tend to transfer behaviour pat-
terns and emotions concerning physical rooms and spaces over to virtual spaces.
This encourages a form of natural and intuitive cooperation, comparable to the
one existing between athletes sharing training machines. An athlete who is just
about to finish his exercises or is just resting will step back as soon as possible
to free the machine for an arriving colleague. On the other hand, if he is still
using the machine and the other one stays waiting, the former will give some
informal information like “just a moment” or “give me ten more minutes”.

Whenever two MAL users virtually meet in a MAL application, both have
the option to initiate a conversation by clicking on the picture of the co-worker.
In most occasions awareness of the presence of the other and maybe a personal
communication via the gallery will solve a locking problem. A polite and cooper-
ative conduct is encouraged through contextual awareness [2]. Awareness about
co-workers helps to reduce frustration and increase the efficiency of cooperative
work [3]: “Seeing” co-workers often prevents potential conflicts from occurring,
since it is possible for a user to intuitively understand his co-worker’s task and
to correctly predict their next steps.

2.3 Intuitive User Interface supporting Awareness-based Locking

One of the primary goals in creating the MAL system was to keep the user
interface of the MAL applications as intuitive as possible. An interface like that
of many multiuser text editors, where a user has to claim temporary ownership
over a chunk of data before he can modify it [5] would consume too much time
and distract the users from their tasks. Instead we propose a straightforward and
intuitive user interface which does not require additional buttons, commands and
procedures to remember.

Therefore we introduce the new concept of wish locks, with the intended
meaning to hold a (probably dirty) read lock and to wish (and to wait for) a

205

write lock. Wish locks are always immediately obtainable. When a user enters
a Ul page for editing, the MAL application automatically locks all unlocked
attributes on this Ul page with write locks and all locked variables with wish
locks. In either case the page can be displayed immediately.

If user A enters a Ul page containing attributes locked by user B, the MAL
system behaves as follows. On user A’s side the editing fields of the corresponding
attributes are disabled and their labels are crossed out in user B’s color. On user
B’s side the labels of the same editing fields are marked with a “W” (“wish”)
in user A’s color, to inform user B that he is blocking those attributes for user
A (figure 2). To keep the user interface simple there are no dedicated buttons
or commands for releasing locked attributes. To do this, users “step away” from
them, i.e. move to another UI page. Clients always release all wish- and write-
locks whenever the user changes from one page to another, even if both pages use
the same variables. Users waiting for a lock to be released form a queue (FIFO)
and are guaranteed to be granted access in the correct order — independent of
network lag. Likewise, if a user quickly moves one screen back and forth while
another user is waiting for locks on the the first screen to be released, the access
rights are guaranteed to be granted to the second user and not be reclaimed by
the first one.

Same Color

it Biographical Da =10 il
Programs Options Hg Developer Database
Biographic. D&
oo]
Variables locked };‘T‘i‘(‘“e }
- eha Results for Christine Rehak:
by user = KABC Same Color I
on the left =5 HAVIVA
Locked by local W |
user: the user e Albrechtstr. 15 |
L 81679 [Munich
on the ”ght Kindergarten | |
wishes to access || School,Grade |
these variables ||
| Quit | << | >>

Fig. 2. User Interface

2.4 Implementation

For the implementation of our awareness-based locking concept MAL uses its
own locking scheme on top of the locking mechanism of the underlying database.
This is done with special database tables containing locking information and

206

messages sent directly from client to client. Notification mechanisms are tightly
integrated into the MAL system. If a user changes the value of an attribute the
change of this attribute will not only be transmitted to all other MAL clients
working on the same record, but also all results that depend on this value will
be recomputed. In this way displayed results — even diagrams — react in near
real-time to changes made by other users.

The relations used by MAL applications often contain very large numbers
of attributes. On the database server these relations get transformed to name-
value pairs, mapping every attribute of the relation to a row in the database.
This allows the minimum lockable unit to be a single attribute.

For optimal efficiency the database server should support row level locking.
If a database supports only page level locking it may occur that MAL clients
cannot get write access to attributes even though no other MAL client delib-
erately locked them, since they reside on the same database page as a locked
attribute. Since locking information is held in MAL in separate lock tables,
physical database locks are only held very shortly. In this case short delays can
result.

MAL applications are by their nature deadlock free. Input elements in an
MAL application are always tied to exactly one attribute. Cyclic deadlocks on
different Ul pages cannot occur, since all write- and wish-locks of one UI page are
claimed in an atomic step (preclaiming) and completely released on each page
change. Thus locks cannot be subsequently demanded. Lifelocks are avoided
since wish locks form a FIFO queue.

3 Scalability

Since MAL-based applications may be used in larger institutions such as hos-
pitals, the network database subsystem was built with scalability in mind. A
large part of the awareness functionality and the propagation of changed values
is done through direct client to client connections, thereby reducing load on the
central server. Nevertheless the tables containing locking information and the
tables containing the actual data reside on the database server and are shared
by all clients. These tables may become heavily used and could become potential
hotspots. Therefore these tables can be horizontally partitioned, reducing lock
contention and increasing performance.

For the partitioning to have optimal benefit, the goal is not to have partitions
of equal size, but to have the amount of insert and delete operations fairly equally
distributed. Therefore the number of insert and delete operations is counted for
each attribute.

The balancing mechanisms of the MAL system are as follows:

— New attributes are always created in the least-used partition.

— The first MAL client to connect to a given MAL database on a given day
moves attributes from more heavily used partitions to lesser-used ones to
balance them. This takes only fractions of a second and goes unnoticed
by the user. Since MAL databases only change incrementally, the balance

207

between partitions does not deteriorate rapidly and thus balancing — akin
to file system defragmentation — does not have to be performed often. As
no data needs to be moved among partitions while the databases are in
use, the clients can cache the information about which attributes resides in
which partition locally. The initial number of partitions per table is freely
configurable. The system administrator can instruct the MAL system to add
more partitions to an existing table at any time. Data will then be moved
automatically from the original partitions to the new ones until once again
all partitions are balanced. On networks with several database servers, each
partition can reside on a different database server, significantly increasing
performance. Since real-time bookkeeping of the insert and delete operations
could become a performance issue in itself, every MAL client logs its insert
and delete operations and updates the information just once per session.

The effect of partitioning on performance (figure 3) is as follows: The perfor-

mance at first increases in a near logarithmic fashion with each added partition
then reaches a plateau. Finally as more and more partitions are added, a slow
linear decrease in performance is measured, which can be attributed to admin-
istrative overhead.

P AR AR L b R
++
,t

Performance

Number of Partitions

Fig. 3. Effect of partitioning on Performace

Since the effectiveness of partitioning depends on the number of occurring

conflicts, the optimal number of partitions varies with the number of clients
typically connecting, access patterns of the users, the underlying hardware, and
the database management system.

Partitioning significantly reduces lock contention and allows a large number

of MAL clients to share a common database and still maintain high response
times.

208

4 Description of the MAL System

MAL was initially created to develop applications for early childhood intervention
centers, and its major use is still in that area.

4.1 Early Childhood Intervention

Early childhood intervention is a service provided to children and their families
in many countries. The goal is to detect potential problems in the development
of children at an early stage. By administering special care to these children it
is then possible to prevent these development problems from occurring, remedy
existing problems or at least lessen their impact. In early childhood intervention
centers, specialists of different medical and therapeutical professions are working
together. MAL applications are mostly used to assist in diagnosis, and to pool
and structure knowledge of different experts over several sessions and to help
for example in the creation of reports. Additionally many standardized tests like
KABC have been implemented as MAL applications.

4.2 Database Application Development using MAL

The MAL applications are created in a different setting than those in the classic
commercial, administrative or technical fields. We decided to build a new soft-
ware development system because of the different circumstances in the social
area:

— It is not possible for the users to give in advance a clean definition of what
a program that is developed for them shall do: The software development
process is highly iterative with a lot of trial-and-error between the developers
and the users. This leads to a high change frequency in the application’s data
scheme and program logic.

— The software developer has to understand the needs of the users. He has to
be a specialist in the social area to be able to communicate about the wishes
of the users: We can not assume the programmer to have classic software-
design and development skills. The system has to give the developer as much
freedom as he needs but also protect him from faults and inconsistencies that
might be easily introduced because of the high change frequency.

— The programs are written for computer-illiterates who might even fear using
a computer. The software that is developed with MAL has to be very easy to
use and present a consistent user interface. The programs have to allow the
user instant access to the data and let him interactively “play” and analyze
the stored data. This requires a seamless but generic integration of the data
analysis functions with the user interface elements.

To cope with these requirements we decided to create a rapid software devel-
opment system based on a newly designed language for the definition of the data-
processing structure, the form-sets and the form-transition-graph. The MAL

209

language shares many concepts and features with functional languages such as
prevention of side effects, lazy evaluation, declarative structure.

To write a MAL program the author has to define the user interface and
the data structure with the functional data processing structure. The definition
of the user interface is done by designing each page by placing predefined user
interface elements on a virtual grid on the screen. Each input element is bound
to a attribute in the database, where the value entered by the user is almost
immediately stored. Each output element is bound to either a database attribute
or a MAL function, whose results it displays. A MAL function is defined by
combining values of database attributes or other MAL functions with the help
of predefined functions or operators. Database attributes and functions can store
or respectively return only values of two types: numbers and texts. There is no
way of assigning a value to a database attribute other than binding it to a user
interface input element. That means, the value of all functions is at all times
a direct function of the user-entered values: the internal state of the program
is entirely bound to the values entered by the user. A change of state can only
happen by the user altering a value in a user interface input element.

The user interface and the functional structure are internally tightly coupled
and kept consistent. That means, if an output-element is on the same form as an
input element, and the function that is bound to the output-element uses (di-
rectly or indirectly via multiple levels of functions) the database attribute bound
to an input element on the same form, the output-element updates automati-
cally whenever the user alters the value of the input element. The programmer
only defines the function-structure behind it — the MAL system takes care of
screen-updates.

5 Conclusions

In this paper we presented awareness concepts for avoiding locking conflicts in
interactive database applications with long running transactions. While classical
database applications are based on ACID transactions using strict isolation and
anonymity between different users, our awareness concept surrenders isolation
and the anonymity of locks. Making concurrent users aware of each other gives
them a means to cooperate on a meta level about restricted resources like long-
locked tuples. We introduced wish locks to express write wishes to the owner
of write locks and to gain intermediate results. An intuitive user interface sup-
porting awareness-based locking was introduced. Scalability can be reached by
the use of vertical and dynamic horizontal partitioning. We implemented these
concepts in the MAL system, a rapid database application development system.
Several applications in the area of early childhood intervention using MAL are
already in use.

References

1. Elena Rocco, University of Michigan: Trust Breaks Down in FElectronic Contexts
but Can Be Repaired by Some Initial Face-to-Face Contact. Conference on Human

210

Factors and Computing Systems (CHI), 1998, Los Angeles, pp. 496 — 502

. Gloria Mark, Ludwig Fuchs, Markus Sohlenkamp: Supporting Groupware Conven-
tions through Contertual Awareness. Proceedings of the Fifth European Conference
on Computer Supported Cooperative Work (ECSCW), 1997, Lancaster, pp. 184 —
193

. Carl Gutwin, University of Saskatchewan: Effects of Awareness Support on Group-
ware Usability. Human factors and Computing Systems (CHI), 1998, pp. 511 — 518
. Johann Schlichter, Michael Koch, Chengmao Xu: Awareness — The Common Link
Between Groupware and Community Support Systems. Lecture Notes in Com-
puter Science 1519, Community Computing and Support Systems, T. Ishida (ed.),
Springer Verlag, 1998, Berlin, pp. 77 — 93

. Johann Schlichter, Michael Koch, Martin Biirger: Workspace Awareness for Dis-
tributed Teams. Proc. Coordination Technology for Collaborative Applications -
Organizations, Processes, and Agents, Singapore, Lecture Notes on Computer Sci-
ence 1364, W. Conen, G. Neumann (eds.), Springer Verlag, 1997, Berlin, pp. 199 —
218

. Carl Gutwin, Saul Greenberg, Mark Roseman: Supporting Awareness of Others in
Groupware. Conference on Human Factors and Computing Systems (CHI), Vancou-
ver, 1999, pp. 205 ff.

. Paul Dourish, Victoria Bellotti: Awareness and Coordination in Shared Workspaces.
Conference proceedings on Computer-supported cooperative work, 1992, Toronto,
pp. 107 — 114

211

