
Co-rating Attacks on Recommendation Algorithms

Manfred Moosleitner
Department of Computer

Science
Universität Innsbruck,

Austria

Günther Specht
Department of Computer

Science
Universität Innsbruck,

Austria

Eva Zangerle
Department of Computer

Science
Universität Innsbruck,

Austria

firstname.lastname@uibk.ac.at

ABSTRACT
Online shops, streaming services, and booking systems use
algorithms to recommend items from their stock to users.
These recommendations are often calculated based on the
interactions of other users with the items, e.g., buying a
product or watching a movie. This creates an attack point
where the outcome of recommendation algorithms can be
purposefully manipulated by manually or automatically cre-
ated user interactions, aimed to raise or lower the relevance
of specific items. We study the attackability of recommender
algorithms by simulating a series of attacks on six recom-
mendation algorithms, using three attack strategies, and two
opposing attack objectives. We run these experiments with
varying numbers of co-ratings per attack and evaluate the
overall item ranking and an average change in average rank.
Our results show that the effort required of and the efficiency
reached by the attacks greatly depends on the strategy, ob-
jective, and recommendation algorithm. Additionally, the
calculated average change in average rank provides an indi-
cator about the attackability of recommendation algorithms.
We find that neighborhood- and cluster-based algorithms
show a higher vulnerability against attacks compared to al-
gorithms based on matrix factorization.

Keywords
Recommender Systems, Co-Rating Attacks, Attack Mea-
surements, Manipulation, Bias

1. INTRODUCTION
Recommender systems are ubiquitous in today’s online

world as they provide users of, for instance, online shops,
video, and music streaming services with recommendations
of items that might be interesting to them [21, 23]. Such rec-
ommendations are computed based on interactions of users
with items. An interaction can be, e.g., a user who rates an
item with five stars, often called collaborative filtering [22].
Based on interactions between users and items, in collabo-

32nd GI-Workshop on Foundations of Databases (Grundlagen von Daten-
banken), September 01-03, 2021, Munich, Germany.
Copyright © 2021 for this paper by its authors. Use permitted under Cre-
ative Commons License Attribution 4.0 International (CC BY 4.0).

rative filtering recommender algorithms, rating predictions
are frequently computed based on user similarity, which is
captured by co-rated items of a pair of users. This opens
a possibility for manipulations of the computed recommen-
dations, as the ratings stem from the user base and their
interactions with the system. One type of possible manipu-
lations is shilling attacks [11], where additional interactions
are injected into the system to alter the recommendations
computed by the system. One famous example of such a
shilling attack at Amazon was reported on December 7th in
2002 by the British online news service “The Register”1. On
Amazon, users are provided with recommendations in the
form of “Customers who viewed this article, also viewed ...”.
To manipulate these recommendations, a group of attackers
interacted with two different books multiple times, aiming
to make the second book appear in the recommendation sec-
tion of the first book, although it diverged in content and
genre. It is unknown how many people were involved exactly
and how often the two books were co-viewed, but this exam-
ple shows vulnerabilities that can be abused to manipulate
the outcome of recommender systems.

For this paper, we focus on co-rating attacks, a specific
form of shilling attacks. A co-rating attack means that a
single attack in an attack series consists of two ratings, e.g.,
one rating of user B for item X and one rating of user B
for item Y, to influence the rating behavior of the targeted
system, possibly for one specific user A. We call user A the
target user and user B the auxiliary user. Similarly, we call
item X the target item and item Y the auxiliary item, and the
attack aims to raise the predicted ratings for the target item
X. The contribution of this work is two-fold: (i) we provide
a systematic evaluation of the vulnerability of recommen-
dation algorithms against co-rating attacks and the effort
required for such attacks to be successful, and (ii) we pro-
pose a new metric to measure the attackability and hence,
the vulnerability (respective resilience) of recommendation
algorithms against different co-rating attack strategies.

2. RELATED WORK
In the following, we discuss work related to attacks on

recommender systems and measures that aim to quantify
these attacks.

Lam et al. [12] classified three different areas where at-
tacks on recommender systems can happen. Firstly expo-
sure, where systems get breached, and private data from

1https://www.theregister.co.uk/2002/12/07/
sodomites_overrun_amazon_com/



users is leaked. Secondly, the authors describe sabotage as
an attack to hinder the service of the targeted system at
all and give denial of service as an example. Thirdly, they
mention the area of bias, where the attacks focus on pur-
posefully changing the ratings of the recommender system.
The former two types, exposure, and sabotage are out of the
scope of this work, as they are more in the area of classic se-
curity topics. We focus on the manipulation of bias instead.
Bias in our context can be, e.g., that a popular item is given
a higher relevance when calculating the recommendations,
purely due to its popularity. This is in contrast with the
main purpose of recommender systems, namely, to suggest
items to users that fit their personal taste.

Jannach et al. [9] categorize attacks into three attack di-
mensions. They termed the first category push attacks; their
purpose is to increase the predicted ratings for a specific
item. The attacks in the second category are nuke attacks,
which aim to lower the predicted ratings for a specific item.
Please note that we refer to these attacks as pull attacks.
The last category described serves the purpose of rendering
the recommender system ineffective and unpredictable. One
additional dimension for attacks lies in the strategy when se-
lecting the auxiliary user and item. Mobasher et al. [15] give
a detailed overview of different strategies, which focuses on
the selection of the auxiliary items by using statistics about
the data. Some of the strategies described choose auxiliary
items from the same category and genre as the target item,
other strategies use the popularity of the item or choose
them randomly. In contrast, we focus on the selection of the
auxiliary user.

Early works [11, 18, 16, 19] and more recent publications
[4, 1] feature attacks only on variations of the K-Nearest-
Neighborhood (KNN) algorithms. In this work, we addi-
tionally consider algorithms based on matrix factorization
(MF) [14], singular value decomposition (SVD) [10], co-
clustering [6], and “popularity differential” [13].

Burke et al. [3] state that a popular way to measure the
robustness of a recommendation algorithm against attacks
is the average prediction shift, which measures the average
shift of the ratings predicted by the algorithm across all
users. The prediction shift reflects whether an attack has
the intended effect, but not how large the impact is. As
a solution, they propose using the average hit ratio, which
counts the number of target items that appear in the list of
recommendations of the target user.

O’Mahony et al. [20] analyze the performance of attacks
using HitRatio and prediction shift, but only on a KNN-
based recommender. Lam et al. [12] provide an overview
of different possibilities to attack a recommender system,
but they do not present a quantitative analysis. We use a
similar approach as O’Mahony et al. [19], but evaluate the
attacks for multiple recommendation algorithms and multi-
ple attack strategies, and measure the effect of the intensity
of an attack.

3. METHODOLOGY
The general idea of our work is to capture the effort re-

quired for an attack to be successful and the impact of co-
rating attacks on the predicted ratings. The required effort
can be measured by the number of co-ratings used in an at-
tack, i.e., the number of interactions of the auxiliary user
with the target item and the auxiliary item in the form of
two rating entries in the dataset. We consider a push attack

to be successful if the targeted item reaches the top-10 rec-
ommendations, as this increases the visibility of the item and
previous research has shown that a list of ten recommenda-
tions can be a sensible choice in regards to set attractiveness
and choice difficulty [2]. For pull attacks, we consider an
attack to be successful if the rank of the target item, after
the attack, is at least ten ranks lower than before the attack.
This would pull the targeted item out of the top-10 and de-
creases its visibility. We define the impact of an attack as
the change in rank of the target item in the average item
ranking.

For our experiments, we rely on the MovieLens 100K
dataset [8]2 as the basis, which is an established dataset
widely used in the recommender systems research commu-
nity [18, 6, 13, 19, 16, 20, 14, 1].

Our experiments are organized in individual steps. A step
can be viewed as the current state of the experiment, includ-
ing the dataset, the training of the algorithm, and the pre-
dicted ratings. For each recommender algorithm, we start
with zero co-ratings, train the algorithm on the unmodified
dataset, and calculate the rankings per item for each user
and the average rank per item over all users. We refer to
this as step 0, and subsequently, add a single co-rating to
the dataset (and hence, run an attack); we refer to this as
step 1 and repeat this procedure. In each step, we compute
the change in the rank and the average rank for the tar-
get item. We hypothesize that a noticeable effect should be
reached within 100 iterations, therefore using this number
as the maximum number of steps in our experiments.

We analyze the experiments along the four dimensions
recommendation algorithm, attack strategy, attack purpose,
and the number of steps, where the attack purpose is defined
as whether the goal of the attack is to lower or raise the rank
of the target item, whereas the attack strategy describes how
the auxiliary user and the auxiliary item are selected.

The configurations for single experiments have been com-
posed such that they cover a broad spectrum of the full
experiment space. We describe these dimensions in the fol-
lowing.

3.1 Recommendation Algorithms
As the main focus of this work lies in examining how

different recommendation algorithms behave when exposed
to co-rating attacks, we evaluate six recommendation algo-
rithms3. We selected two k-Nearest Neighbor [17] variations,
KNNBasic and KNNWithMeans4, where the neighborhood
is built using the k-most similar users with respect to the
user ratings. In our case, mean squared difference [17] was
used to calculate the similarity. The kNN-based algorithms
were chosen because they are fairly simple, are commonly
used as a baseline, and it should be easy to find a working
attack strategy for them.

SlopeOne [13] is also a simple algorithm, where the ratings
for a user A are computed using the ratings of other users
who share rated items with A. E.g., user A rated item X
and Y, and user B only rated item X. The rating difference
of user B is added to the rating of user A’s rating for item
X to predict the rating of user A for item Y.

2https://grouplens.org/datasets/movielens/100k/
3For the implementation, we relied on the Python Surprise
library https://github.com/NicolasHug/Surprise
4Here the predicted rating is added to the mean rating across
all users.



CoClustering [6] was selected because it does not only use
user- and item-clusters, but also the co-clusters which should
make it harder to find a working attack strategy compared
to KNN-based approaches.

Singular Value Decomposition (SVD) [10] aims to recon-
struct the rating matrix (user× items) from a matrix repre-
senting the user’s latent factors and a second matrix, repre-
senting the latent factors of the items. Non-Negative Matrix
Factorization (NMF) [14] also relies on matrix factorization,
which is used by Netflix [7] and Youtube [5].

To assess the difference in the performance of the cho-
sen algorithms, the algorithms were evaluated using five-fold
cross-validation using the MovieLens dataset and the con-
figuration parameters as they were used in our experiments.
The resulting Mean Absolute Error (MAE) and Root Mean
Squared Error (RMSE) of the predicted ratings in Table 1
show that the performances of the algorithms are similar.

RMSE MAE
mean std mean std

KNNBasic 0.9785 0.0053 0.7105 0.0036
KNNWithMeans 0.9507 0.0032 0.7491 0.0023

SVD 0.9369 0.0044 0.7386 0.0040
NMF 0.9628 0.0038 0.7569 0.0030

SlopeOne 0.9447 0.0024 0.7423 0.0025
CoClustering 0.9655 0.0050 0.7561 0.0059

Table 1: Five-fold cross-validation of the evaluated algorithms.

3.2 Attack Strategies
In the following, we investigate three different co-rating

attack strategies. Our first attack strategy is the baseline
approach (BASIC), where the auxiliary user is created as a
fresh new user, i.e., a user that has not provided any rat-
ings so far. The second attack strategy is the user activity
approach (ACT), where the auxiliary user is selected based
on the rating activity of the user—the dataset is analyzed
at runtime, and the most active user is determined and mis-
used as the auxiliary user, based on the data in step 0. The
third attack strategy is the user similarity approach (SIM),
where the user most similar to the target user is selected as
the auxiliary user. The core idea here is that user similarity
metrics are also used in collaborative filtering recommender
algorithms [22] and hence, similarly choosing the auxiliary
user seems promising. As for the user similarity compu-
tation, we rely on the cosine similarity of the user rating
vectors. For all three attack strategies, the same auxiliary
user is used in all steps. It is important to note that we
examine the effect of co-rating attacks on recommendation
algorithms alone and not whole recommender systems, thus
using the full knowledge about the dataset in the attack
strategies.

In all approaches, an arbitrary user was chosen as target
user—i.e., we aim to measure the impact of the co-rating
attacks on the movie rankings for this user. For our experi-
ments, the user with user-id 1 was picked as the target user.
The movie “The Truth About Cats & Dogs (1996)” (movie
id 111) was randomly selected as the auxiliary item from
the set of movies the target user rated with five stars. The
movie “Scream of Stone (Schrei aus Stein) (1991)” (movie
id 1682) was selected as the target item, because it was the
newest movie in the dataset (highest movie id) and because
the movie has not been rated by the target user yet. Table

2 shows some statistics about the data before co-ratings are
added and the chosen user and movies. The data collected
shows that the target-user is quite active, with more than
double the number of ratings than the average user and more
than four times the number of ratings than the median over
all users. We can also see that the mean ratings and the
standard deviation for the target user are higher than the
mean rating for all users. The data for the auxiliary movie
shows that the movie is rated more often, but only a little
lower, than the average movie. The target movie has only a
single rating in the original data, which should be beneficial
for our attacks.

An attack is now realized by the auxiliary user awarding
high ratings for both movies (and hence, co-rating these)
until the target item appears in a prominent position in the
target user’s list of recommended movies.

For running the experiments, in the first step, the raw
dataset is used to train the recommender algorithms to be
evaluated. These trained models are then used to predict
the ratings for all items for all users, from which we infer a
ranking of all items for each user. These per-user rankings
are then used to compute the average rank for each item
over all users. In the next step, one co-rating is added to
the dataset. Subsequently, the extended dataset is used for
computing updated rankings for all items for all users and
the average rank over all users. This procedure is repeated
100 times for each algorithm, providing the rank of the tar-
get item for the target user and the average rank over all
users, and also the change in rank between the individual
steps, to show the effect of the attack from one step to the
next.

3.3 Attack Purposes
We evaluate the three attack strategies for both pull at-

tacks (aiming to lower the predicted rating of the target
item) and push attacks (aiming to raise the predicted rating
of the target item). For push attacks, it is sufficient to pick
an item that has not been rated by the target user, as the
target item. For pull attacks, in contrast, we computed the
recommendation lists, based on the data in step 0, and chose
the top-ranked item as target item.

3.4 Quantifying Attackability
Here we introduce our novel attackability metric, which

takes into account the effort and the effect of an attack. We
apply this metric to the data collected during our experi-
ments and present the results in Section 4.3.

Besides investigating the manipulation of the rank of an
item for a single user, we are also interested in the impact
of the co-rating attacks on the average ratings of each item
across all users. Thus, we compute an average ranking for all
items (cf. Section 3.2), which is used to determine the aver-
age rank of the target item over all users. Furthermore, we
aim to quantify the attackability of recommendation algo-
rithms. Hence, we propose to consider the absolute average
change in the average rank of the target item. Consider the
target item being ranked at position 1000 at step 0, and in
step 1 ranked at 100, then the change in ranks is 900. We
compute this change across all steps and compute the aver-
age change in rank for the target item. Formally, we define
Ri as the average item rank for step i, i.e., R0 for step 0,
etc. We further define ranki as the rank of the chosen tar-
get item in the corresponding average item ranking Ri. The



Ratings
Min Q1 Median Q3 Max Mean Std Count

Full Dataset 1 3 4 4 5 3.53 1.13 100,000
Target User 1 3 4 5 5 3.61 1.26 272
Aux. Movie 1 3 4 4 5 3.49 0.96 272

Target Movie 3 3 3 3 3 3.00 0.00 1

(a) Statistics about the ratings in the data.

Number of Ratings
Min Q1 Median Q3 Max Mean Std Count

Per User 20 33 65 148 737 106.05 100.93 943
Per Movie 1 6 27 80 583 59.45 80.38 1,682

(b) Statistics about the number of ratings in the full dataset.

Table 2: Statistics about the data and the chosen user and movies for different aggregations. Shown are the five-number summary, mean, and
standard deviation of the rating values in Table 2a and of the number of ratings in Table 2b. The column Count shows the number of rows for

each aggregation, and the ratings for the auxiliary movie are from 272 individual users.

change in rank is then defined as the difference between two
steps: ∆ranki,i+1 = ranki+1 − ranki. The average change
in rank is computed based on the sum of all ∆ranki,i+1 of
the available steps, as shown in Equation 1, where n is the
number of steps to be used.

∆rank =

n−1∑
i=0

∆ranki,i+1

n
(1)

4. RESULTS AND DISCUSSION
In our experiments, we run multiple attacks, using mul-

tiple dimensions, adding up to a total of 1,800 individual
trained prediction models, which were used in 3,600 exper-
iments. In the following, we present the results of these
evaluations.

4.1 Push Attack Evaluation
For this evaluation, we analyze the rank of items in the

recommendation list for each step. Here, the best achiev-
able rank in the ranking is zero. As stated in Section 3, we
consider a push attack successful if the attack changes the
rank prediction of the target item to be in the top-10 of the
average item ranking.

The first set of experiments investigate the BASIC attack
strategy, where a new user is created as the auxiliary user
and the auxiliary item was randomly selected from the set
of movies that have not been rated by the target user.

Figure 1a shows that the average rank for CoClustering is
influenced most as the curve races directly to the top ranks
within the first few steps. The results for NMF and SVD
show capricious behavior within a confined area, but do not
reach a high rank. The ranks for KNNBasic and KNNWith-
Means show that they are only influenced at the start but
converge quickly. SlopeOne is unaffected by the attack with
no changes in the rank. For NMF and SVD, the attacks can
be regarded as failed, but the ranking values have a high
variance, which goes in the direction of sabotage, as intro-
duced in Section 2. Only the attack on CoClustering was
successful, showing a high attackability of the basic attack
strategy.

The second set of experiments aims at investigating the
user activity attack strategy; Figure 1b shows the obtained
results. We can see that the values for all algorithms rush
towards the top at the start. CoClustering, KNNBasic, and

KNNWithMeans quickly arrive at the top ranks. NMF and
SVD show some erratic behavior and SlopeOne converges
shortly after reaching rank 200. CoClustering was attacked
successfully again since a rank in the top ten was clearly
reached. The attacks on KNNBasic and KNNWithMeans
also reach a high rank but did not reach the top-10. NMF,
SVD, and SlopeOne could not be attacked successfully. Gen-
erally, we observe that the activity-based attack strategy
reaches a higher attack effect than the basic attack approach.

The third set of experiments used the similarity between
the users to select the target user; the results are shown in
Figure 1c. We observe a tendency towards higher ranks for
NMF and SVD, but the erratic behavior starts to dominate
early on. In addition to CoClustering, KNNBasic, and KN-
NWithMeans, also SlopeOne changes to a high rank quickly.
Using the similarity to select the target user leads to the
highest ranks for the majority of algorithms. All algorithms
except for NMF and SVD were attacked successfully.

4.2 Pull Attack Evaluation
In the following, we evaluate pull attacks, where an at-

tack is considered successful if the rank of the target item is
consistently lowered by 10 or more ranks after an attack.

For the BASIC attack approach, a fresh user is used as the
auxiliary user. As the target item, the movie with the high-
est id from the set of movies the target user has not rated was
selected. Figure 2a shows the obtained results. SlopeOne
is mostly unaffected by the pull attack. The effect on SVD
was rather small and shows minor fluctuations. The average
rank for KNNWithMeans moves slowly and converges early
around 110. CoClustering, KNNBasic, and NMF show high
vulnerability against the attacks. Most interesting is the be-
havior of NMF showing a clear tendency towards the lower
ranks when compared to SVD, the other MF-based algo-
rithm, whose behavior showed to be stable and unaffected
by the attacks.

The next set of experiments analyzes the activity-based
approach with pull attacks. Figure 2b shows that NMF
and SVD are only marginally affected as both algorithms
show only minor fluctuations. CoClustering, KNNBasic,
KNNWithMeans, and SlopeOne show a clear tendency to-
wards the lower ranks.

The last set of experiments used the similarity-based ap-
proach to launch pull attacks on the algorithms. In Fig-
ure 2c, we observe that the results are quite similar to the



0 20 40 60 80 100
Steps

0

200

400

600

800

1000

Av
er

ag
e 

Ra
nk

 o
f t

ar
ge

t-i
te

m
Basic

Rank-Step-Graph Push Attack
CoClustering
KNNBasic
KNNWithMeans
NMF
SVD
SlopeOne

(a) Basic attack approach.

0 20 40 60 80 100
Steps

0

200

400

600

800

1000

Av
er

ag
e 

Ra
nk

 o
f t

ar
ge

t-i
te

m

User Activity
Rank-Step-Graph Push Attack

CoClustering
KNNBasic
KNNWithMeans
NMF
SVD
SlopeOne

(b) User activity approach.

0 20 40 60 80 100
Steps

0

200

400

600

800

1000

Av
er

ag
e 

Ra
nk

 o
f t

ar
ge

t-i
te

m

User Similarity
Rank-Step-Graph Push Attack

CoClustering
KNNBasic
KNNWithMeans
NMF
SVD
SlopeOne

(c) User similarity approach.

Figure 1: Push attacks: average rank for the different co-rating attack strategies.

0 20 40 60 80 100
Steps

0

200

400

600

800

1000

1200

Av
er

ag
e 

Ra
nk

 o
f t

ar
ge

t-i
te

m

Basic
Rank-Step-Graph Pull Attack

CoClustering
KNNBasic
KNNWithMeans
NMF
SVD
SlopeOne

(a) Basic attack strategy.

0 20 40 60 80 100
Steps

0

200

400

600

800

1000

1200

1400

Av
er

ag
e 

Ra
nk

 o
f t

ar
ge

t-i
te

m

User Activity
Rank-Step-Graph Pull Attack

CoClustering
KNNBasic
KNNWithMeans
NMF
SVD
SlopeOne

(b) User activity strategy.

0 20 40 60 80 100
Steps

0

200

400

600

800

1000

1200

1400

Av
er

ag
e 

Ra
nk

 o
f t

ar
ge

t-i
te

m

User Similarity
Rank-Step-Graph Pull Attack

CoClustering
KNNBasic
KNNWithMeans
NMF
SVD
SlopeOne

(c) User similarity approach.

Figure 2: Pull attacks: ranks in the average ranking for the different co-rating attack strategies.

outcome of the experiment with the activity-based approach.
SVD and NMF only show single spikes in the change of the
average rank. For the remaining algorithms, the average
rank of the target item changes rapidly to a lower rank.

4.3 Attackability Evaluation
Table 3 shows the attackability evaluation measured by

the ∆rank measure (cf. Section 3.4) for the data from our
experiments for push and pull attacks, and each of the three
attack strategies used.

For push attacks, we observe a relation between the at-
tackability, i.e., if an algorithm could be attacked success-
fully, and the average change in average rank for the cor-
responding algorithms. The relation also holds for a lower
observed attackability, i.e., whether an algorithm could not
be attacked successfully, and lower values for the average
change in average rank. For pull attacks, we also see the
same relation between our observed attackability and the
calculated average change in average rank. Even though the
push attacks on SVD and NMF were mostly considered un-
successful, the average change in average rank is still higher
due to the erratic behavior the algorithms showed.

From this, we can state that our newly proposed metric,
the average change in average rank, is an intuitive and feasi-
ble indicator for how vulnerable an algorithm is to a specific

attack strategy and attack purpose, hence describing the at-
tackability of the algorithm against co-rating attacks.

Push attacks Pull attacks
Algorithm BASIC ACT SIM BASIC ACT SIM

CoClustering 7.14 7.14 7.14 10.43 10.51 10.52

KNNBasic 2.78 9.57 9.69 4.29 15.24 14.95

KNNWithMeans 1.15 9.45 9.45 1.11 15.42 10.78

NMF 4.09 7.40 10.50 11.79 0.01 0.01

SVD 3.50 5.91 6.13 0.23 0.03 0.02

SlopeOne 0.06 7.74 9.27 0.00 11.48 7.92

Table 3: Attackability for push and pull attacks, where brighter
colors represent a lower change in average ∆ rank and darker colors

signal a higher change in average ∆ rank.

5. CONCLUSION
We investigated the attackability of recommendation algo-

rithms against co-rating attacks. We ran experiments with
a varying number of co-ratings, approaches, and types of
attack for the chosen algorithms. This added up to a total
of 1,800 prediction models, which were used in 3,600 ex-
periments. In these experiments, we investigated the effort,
the number of co-ratings, and the effect of the attacks on



the results of the algorithm, where we also introduce a new
metric to express the attackability from the collected data,
by calculating the average change in average rank over all
steps. We find that the nearest neighbor and co-clustering
algorithms were the least resilient algorithms. Furthermore,
we observe that the matrix factorization-based algorithms
show erratic behavior when attacked with push attacks, but
generally showed a lower attackability when assaulted with
pull attacks. Our results show that a handful of coordinated
users are enough to manipulate the outcome of recommen-
dation algorithms, thus having an impact on which products
we may buy, movies we watch, or locations we visit for our
next holiday. For future work, we aim to investigate the in-
fluence of the number of ratings when choosing target-user
and -movie, and auxiliary user. Furthermore, we aim to test
the generalizability of our approach and metric by running
the experiments using different target-users and -items, and
on different and larger datasets.

6. REFERENCES
[1] F. Aiolli, M. Conti, S. Picek, and M. Polato. Big

Enough to Care Not Enough to Scare! Crawling to
Attack Recommender Systems. In European
Symposium on Research in Computer Security, pages
165–184. Springer, 2020.

[2] D. Bollen, B. P. Knijnenburg, M. C. Willemsen, and
M. Graus. Understanding Choice Overload in
Recommender Systems. In Proceedings of the Fourth
ACM Conference on Recommender Systems, RecSys
’10, page 63–70, New York, NY, USA, 2010.
Association for Computing Machinery.

[3] R. Burke, M. P. O’Mahony, and N. J. Hurley. Robust
Collaborative Recommendation. In F. Ricci,
L. Rokach, and B. Shapira, editors, Recommender
Systems Handbook, pages 961–995. Springer, 2015.

[4] K. Chen, P. P. Chan, F. Zhang, and Q. Li. Shilling
Attack based on Item Popularity and Rated Item
Correlation against Collaborative Filtering.
International Journal of Machine Learning and
Cybernetics, 10(7):1833–1845, 2019.

[5] P. Covington, J. Adams, and E. Sargin. Deep Neural
Networks for YouTube Recommendations. In
Proceedings of the 10th ACM Conference on
Recommender Systems, RecSys ’16, page 191–198,
New York, NY, USA, 2016. Association for
Computing Machinery.

[6] T. George and S. Merugu. A scalable Collaborative
Filtering Framework based on Co-Clustering. In Fifth
IEEE International Conference on Data Mining
(ICDM’05), pages 4–pp. IEEE, 2005.

[7] C. A. Gomez-Uribe and N. Hunt. The Netflix
Recommender System: Algorithms, Business Value,
and Innovation. ACM Transactions on Management
Information Systems, 6(4), Dec. 2016.

[8] F. M. Harper and J. A. Konstan. The MovieLens
Datasets: History and Context. ACM Trans. Interact.
Intell. Syst. (TiiS), 5(4):19:1–19:19, Dec. 2015.

[9] D. Jannach, M. Zanker, A. Felfernig, and G. Friedrich.
Recommender Systems - An Introduction. Cambridge
University Press, 2010.

[10] Y. Koren, R. Bell, and C. Volinsky. Matrix
Factorization Techniques for Recommender Systems.

Computer, 42(8):30–37, 2009.

[11] S. K. Lam and J. Riedl. Shilling Recommender
Systems for Fun and Profit. In Proceedings of the 13th
International Conference on World Wide Web, WWW
’04, pages 393–402, New York, NY, USA, 2004. ACM.

[12] S. K. T. Lam, D. Frankowski, and J. Riedl. Do You
Trust Your Recommendations? An Exploration of
Security and Privacy Issues in Recommender Systems.
In G. Müller, editor, Emerging Trends in Information
and Comm. Secur., pages 14–29. Springer, 2006.

[13] D. Lemire and A. Maclachlan. Slope One Predictors
for Online Rating-Based Collaborative Filtering. In
Proceedings of the 2005 SIAM Int. Conference on
Data Mining, pages 471–475. SIAM, 2005.

[14] X. Luo, M. Zhou, Y. Xia, and Q. Zhu. An Efficient
Non-Negative Matrix-Factorization-Based Approach
to Collaborative Filtering for Recommender Systems.
IEEE Transactions on Industrial Informatics,
10(2):1273–1284, 2014.

[15] B. Mobasher, R. Burke, R. Bhaumik, and C. Williams.
Toward Trustworthy Recommender Systems: An
Analysis of Attack Models and Algorithm Robustness.
ACM Trans. Internet Technol., 7(4):23–es, Oct. 2007.

[16] B. Mobasher, R. Burke, C. Williams, and
R. Bhaumik. Analysis and Detection of
Segment-Focused Attacks Against Collaborative
Recommendation. In O. Nasraoui, O. Zäıane,
M. Spiliopoulou, B. Mobasher, B. Masand, and P. S.
Yu, editors, Advances in Web Mining and Web Usage
Analysis, pages 96–118. Springer, 2006.

[17] X. Ning, C. Desrosiers, and G. Karypis. A
Comprehensive Survey of Neighborhood-Based
Recommendation Methods. In F. Ricci, L. Rokach,
and B. Shapira, editors, Recommender Systems
Handbook, pages 37–76. Springer, 2015.

[18] M. O’Mahony, N. Hurley, N. Kushmerick, and
G. Silvestre. Collaborative Recommendation: A
Robustness Analysis. ACM Trans. Internet Technol.,
4(4):344–377, Nov. 2004.

[19] M. P. O’Mahony, N. J. Hurley, and G. C. Silvestre.
Recommender systems: Attack Types and Strategies.
In AAAI, pages 334–339, 2005.

[20] M. P. O’Mahony, N. J. Hurley, and G. C. Silvestre.
Attacking Recommender Systems: The Cost of
Promotion. In Proc. of the Workshop on Recommender
Systems, in Conjunction with the 17th Eur. Conf. on
Artif. Intell., Riva del Garda, Italy, pages 24–28, 2006.

[21] M. Pichl, E. Zangerle, and G. Specht. Improving
Context-Aware Music Recommender Systems: Beyond
the Pre-Filtering Approach. In Proceedings of the 2017
ACM on International Conference on Multimedia
Retrieval, ICMR ’17, page 201–208, New York, NY,
USA, 2017. Association for Computing Machinery.

[22] J. B. Schafer, D. Frankowski, J. Herlocker, and S. Sen.
Collaborative Filtering Recommender Systems. In The
Adaptive Web, pages 291–324. Springer, 2007.

[23] M. Schedl, P. Knees, B. McFee, D. Bogdanov, and
M. Kaminskas. Music Recommender Systems. In
F. Ricci, L. Rokach, and B. Shapira, editors,
Recommender Systems Handbook, pages 453–492.
Springer, 2015.


