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ABSTRACT
Graph Neural Networks (GNNs) have demonstrated significant
potential in recommendation tasks by effectively capturing intri-
cate connections among users, items, and their associated features.
Given the escalating demand for interpretability, current research
endeavors in the domain of GNNs for Recommender Systems (Rec-
Sys) necessitate the development of explainer methodologies to
elucidate the decision-making process underlying GNN-based rec-
ommendations. In this work, we aim to present our research fo-
cused on techniques to extend beyond the existing approaches for
addressing interpretability in GNN-based RecSys.
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1 INTRODUCTION
The increasing need for machine learning models that can effec-
tively handle and process graph-structured data, prevalent in vari-
ous practical domains like social networks, knowledge graphs, and
molecular graphs, has fostered the emergence and advancement
of GNNs. GNNs have demonstrated impressive potential in recom-
mendation tasks by understanding intricate connections between
users, items, and their characteristics [18, 46]. They are particularly
well-suited for modeling recommendation tasks as they can han-
dle large and sparse graphs, which are typical in recommendation
scenarios [52].

The success of GNN-based recommenders can be attributed to
three main factors: the utilization of structural data, the incorpora-
tion of high-order connectivity, and the exploitation of supervision
signals [11]. (1) Structural data factor that is encompassing diverse
information such as user-item interactions, user profiles, and item
attributes, presents a challenge for traditional RecSys that often
focus on specific data sources, resulting in suboptimal performance.
GNNs provide a unified approach by representing the data as nodes
and edges on a graph, enabling comprehensive utilization of avail-
able data. In contrast to images and texts, graphs deviate from
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grid-like data structures and encompass significant structural infor-
mation. Notably, subgraphs serve as elementary components within
graphs and exhibit a strong association with graph functionalities,
rendering them valuable tools for graph explanation [56]. (2) The
consideration of high-order connectivity is essential for accurate
recommendations. The collaborative filtering effect, where the pref-
erences of users with similar tastes impact recommendations, is
crucial but typically overlooked in traditional approaches, which
primarily rely on directly connected items. In contrast, GNN-based
models effectively capture high-order connectivity by represent-
ing the collaborative filtering effect as multi-hop neighbors on
the graph, integrating it into the learned representations through
embedding propagation and aggregation. The preservation of high-
order connectivity data also proves beneficial for comprehensively
explaining the graph at the model-level (see section 2 ). (3) Sparse
supervision signals pose a challenge in RecSys where GNN-based
models address this by leveraging semi-supervised signals in the
representation learning process. By encoding non-target behaviors
(e.g., search, add to cart) as semi-supervised signals over the graph,
GNNs improve recommendation performance [11].

However, recent research has indicated that GNNs encounter a
similar problem to other deep neural networks, namely their sus-
ceptibility to adversarial attacks [4, 5, 30, 50, 59]. More specifically,
attackers can create graph adversarial perturbations by manip-
ulating the graph’s structure or node characteristics in order to
mislead the GNN model and cause it to produce inaccurate predic-
tions [5, 58]. The enhanced interpretability is thought to provide a
feeling of assurance by engaging humans in the decision-making
procedure [35, 54]. Nevertheless, due to its reliance on data, in-
terpretability itself is prone to potential malicious manipulations
[11]. It should be noted that there are additional endeavors focused
on linking these two subjects, whereby interpretation methods on
non-graph-structured data are targeted for attack [13, 19, 27, 57].

The explanation of deep learning (DL) models on text or im-
ages has received significant attention [37, 42], but explaining DL
models on graphs remains relatively unexplored. This is a more dif-
ficult task due to several reasons [55]. Firstly, the adjacency matrix,
which represents the graph’s topology, consists of discrete values
that cannot be directly optimized using gradient-based methods [6].
Secondly, in certain domains, a graph is considered valid only if it
adheres to a set of specific rules, making the generation of a valid
explanatory graph for underlying decision-making processes of
GNNs a complex endeavor. Lastly, graph data structures are het-
erogeneous, containing various types of node and edge features,
thereby making the development of a universal explanation method
for GNNs even more challenging. The Shapley value [39], a Game
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Theory technique that describes the equitable allocation of aggre-
gate gains among players based on their individual contributions,
has been employed in addressing the first and third challenges un-
der consideration. This approach has been expanded to elucidate
the predictions of machine learning models on tabular data [6] by
considering each attribute of the explained instance as a player en-
gaged in a game, where the prediction represents the corresponding
payout.

Through an in-depth analysis of pertinent literature in the do-
mains of GNNs and explainable RecSys, we have discerned notable
deficiencies in GNN-based recommendation methods. In the con-
text of the forthcoming doctoral research project (currently in its
first year), we aim to address the following crucial research gaps
that we have identified:

(1) There is a need to explore the vulnerabilities of explain-
able GNNs to adversarial attacks specifically targeted at
explanations [58] considering the employing of GNNs in
security-critical applications [49, 50] . Current research on
adversarial attacks in GNNs focuses mainly on the input data
or the model’s predictions, but there is limited understand-
ing of how adversarial attacks can manipulate or deceive the
explanations generated by explainable GNNs [8].

(2) There is a lack of research on developing efficient algorithms
for subgraph extraction that is one of the leading explana-
tion methods for GNNs [29, 53, 56]. Existing approaches
often rely on exhaustive search or heuristics, which can be
computationally expensive and limit scalability [53]. Find-
ing innovative techniques to extract important subgraphs
efficiently without sacrificing the quality of explanations is
an important research challenge.

(3) There is a research gap in evaluating the reliability of local
or single-instance explanations [41, 44]. It is crucial to de-
velop metrics or methods to assess the trustworthiness and
consistency of local explanations and move toward global
and concept-based explanations [31].

(4) The Shapley value [39] exhibits considerable potential as
a methodology for assessing the individual contributions
of various components within a graph towards predictions,
primarily relying on its fundamental characteristics [6, 56].
However, there exists an unaddressed disparity in the uti-
lization of more robust variants of this approach [14, 16].

In summary, while GNN-based RecSys have shown promising
results, there are still several challenges that need to be addressed.
Developing more efficient GNN architectures and leveraging ex-
plainable AI techniques can help bridge this gap and pave the way
for more effective and interpretable recommendation systems.

2 BACKGROUND
Within this section, we delve into significant studies pertaining
to the acquisition of GNNs, alongside the domain of explainable
recommendation. Given that there exist distinct prior studies perti-
nent to each research question, we will delve into them individually
on next section. However, this section primarily focuses on a more
comprehensive overview of the background work to the topic.

The objective of explanation techniques for deep models is to in-
vestigate the intrinsic connections that underlie the predictions gen-
erated by such models. These techniques aim to offer explanations
that are interpretable to human understanding, thereby enhancing
the trustworthiness of deep models. Depending on the nature of the
explanations provided, these techniques can be broadly classified
into two primary categories: instance-level methods and model-
level methods [48]. Instance-level techniques offer explanations
that are specific to each input graph, providing input-dependent
explanations. When presented with an input graph, these methods
elucidate the workings of deep models by identifying the crucial in-
put features that contribute to its prediction. A prominent example
is the model-agnostic technique GNNExplainer [53]. This approach
endeavors to maximize the mutual information between the distri-
bution of potential subgraphs and the predictions of a GNN, thereby
identifying the subgraph that exerts the most substantial influence
on the prediction. However, a limitation of GNNExplainer is its
requirement for retraining in each prediction scenario. Moreover,
although GNNExplainer strives to generate global explanations for
a specific class by employing graph alignment on the subgraph
explanations using ten instances of the class, the efficacy of con-
firming the global explanation is constrained by the computational
efficiency of graph alignment, an NP-Hard problem [53]. To tackle
these challenges, PGExplainer [29] aims to address the drawbacks
associated with GNNExplainer. PGExplainer is a model-agnostic
explanation method that shares the same optimization objective, al-
beit with a fundamental distinction in its utilization of a deep neural
network (DNN) to parameterize the process of generating explana-
tions. Although PGExplainer claims to furnish global explanations,
it is important to note that these explanations are not genuinely
global but rather pertain to multi-instance explanations. Similarly,
PGM-Explainer [44] employs the extraction of pertinent subgraphs
for a given prediction, with the additional advantage of indicating
feature dependencies through conditional probabilities. Diverging
from the approach taken by instance-level methods, model-level
methods concentrate on offering broad insights and a high-level
comprehension to elucidate deep graph models. Their main objec-
tive is to investigate the types of input graph patterns that result in
specific behaviors exhibited by GNNs, such as the maximization of
a target prediction. Input optimization [42] techniques have been
widely explored as a means to attain model-level explanations for
image classifiers. However, directly applying these techniques to
graph models poses challenges due to the discrete nature of graph
topology information, rendering the task of explaining GNNs at
the model-level considerably more complex. Consequently, this
area remains important but relatively under-explored in current
research. To the best of our knowledge, the extant literature com-
prises solely two model-level approaches for explicating GNNs,
namely XGNN [54] and GNNInterpreter [47]. XGNN presents a
methodology for explaining GNNs by means of graph generation.
Rather than directly optimizing the input graph, it trains a graph
generator to generate graphs that maximize a specified target graph
prediction. These generated graphs are then considered as explana-
tions for the target prediction, expected to encompass distinctive
graph patterns. On the other hand, GNNInterpreter employs a nu-
merical optimization technique to acquire the explanation graph
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through continuous relaxation. In the subsequent section, specifi-
cally in RQ2, we will delve into our proposed approach aimed at
achieving the same objective.

3 RESEARCH OBJECTIVES
To extend the motivation introduced above, our research will seek
to address the following research questions:

3.1 RQ1: How can we incorporate adversarial
attacks to explain GNN-based
Recommender Systems?

Adversarial attacks are a modified input to a machine learning
model that is designed to cause the model to produce an incorrect
output. The purpose of adversarial attacks is typically to evaluate
the robustness of a model [22, 23] or to improve its accuracy under
adversarial conditions [32, 40]. Generally, adversarial attacks are not
used to make a model more interpretable. That being said, recent re-
search has explored the possibility of using explainability of GNNs
for adversarially attacking ML models [8, 26]. We hypothesize that
we can look at this scenario from another perspective, which is
how to use adversarial attacks to prune noisy nodes or edges of the
graph to improve interpretability of the model [21]. One potential
approach entails employing targeted adversarial attacks, such as
"Nettack" [58] to identify suitable node and edge modifications
that lead to class changes, aligning with the objective of providing
counterfactual explanations [10, 26, 34]. The particular focus could
center on Counterfactual Explanations (CE) pertaining to recom-
menders, particularly exemplified by the "Prince" [12] algorithm. In
this regard, the top-n recommender’s output can be treated as the
label for the node classification task within the Nettack framework,
allowing for a comparative analysis of the outcomes.

Adversarial examples are generated by intentionally adding
small perturbations to the original input that are imperceptible
to humans but can cause the model to make incorrect predictions.
In the context of GNNs, an adversarial attack refers to the process
of perturbing the nodes or edges of a graph to generate adversarial
examples that can cause the GNN to produce incorrect outputs or
predictions. There are several methods for generating adversarial
examples for GNNs, including node injection [43], edge pertur-
bation [51], and targeted attacks [22], among others. The goal of
these attacks is to identify the most important nodes or edges in
the input graph that are responsible for the GNN’s output and per-
turb them in a way that maximizes the model’s prediction error. In
essence, this is highly similar to well-known GNN explainability
approaches [2, 28, 53, 56] that aim for finding effective subgraphs
and counterfactual examples [2, 28].

At the current stage of the research, there are some efforts to
use adversarial attacks for making more interpretable models. For
instance, [1, 20] proposed a method for using adversarial examples
to highlight important features in a model. The method involves
creating adversarial examples that maximize the difference in out-
put between two subsets of inputs, and then using these examples
to identify the features that are most responsible for the differ-
ence in output. The authors demonstrated the effectiveness of their
method on several image classification tasks. Alvarez-Meris et al. [1]

proposed a method for using adversarial attacks to generate ex-
planations for model predictions. The method involves perturbing
the input image to generate an adversarial example that causes
the model to make a different prediction, and then analyzing the
difference between the two predictions to generate an explanation.
The authors demonstrated the effectiveness of their method on
several image classification tasks. Li et al. [24] proposed a method
for visualizing the loss landscape of deep neural networks. The
authors use adversarial attacks to generate a large number of input
examples and then use these examples to explore the loss landscape.
Zugner et al. [58] proposed a method for evaluating the robustness
of neural networks for graph data. The authors use adversarial
attacks to identify the most important nodes and edges in the input
graph and then use this information to improve the model’s robust-
ness. This paper proposes a method for regularizing the training of
deep neural networks to improve their interpretability. The authors
use adversarial attacks to identify the most important features in
the input and then use this information to guide the regularization
process. These instances are only a small subset of the expanding
research investigating the efficacy of adversarial attacks to enhance
the interpretability of models. Nevertheless, no such research has
been conducted in the RecSys community, and as far as we are
aware, there exist no analogous works that specifically account
for the unique characteristics of RecSys in this research approach.
While the approach is still in its early stages, it has the poten-
tial to be a valuable tool for gaining insights into how machine
learning models are making their predictions and identifying areas
for improvement. Through this RQ we will address the first gap
introduced earlier.

3.2 RQ2: Toward concept-based explanation:
How reliable are the local explanation
methods based on individual instances?

Extensive research has been conducted on explanations at the local
level. A recent survey [48] revealed that the majority of these expla-
nations can be classified into six distinct categories: gradient-based
methods [3], perturbation-based methods [44, 53, 56], decompo-
sition methods [36], surrogate methods [6, 44], generation-based
methods [25, 38], and counterfactual-based methods [28]. As GNN
models become more complex and the data being analyzed becomes
more varied, it may become more difficult to accurately interpret
the model using single-instance explanation methods. There have
been studies that shows local or single-instance explanations of
machine learning models can be unreliable due to several factors
such as context dependency and vulnerability to overfitting [7, 41].
Furthermore, incomplete information is another issue, as local ex-
planations may not consider all relevant information that led to
the model’s decision and may be susceptible to adversarial attacks,
where an attacker deliberately manipulates the input to produce
a misleading or incorrect explanation (RQ1) [47]. Therefore, it is
crucial to complement local explanations with other types of expla-
nations and consider the limitations of each explanation method
when interpreting model decisions.

Concept-basedmethods have several advantages over local expla-
nations in machine learning interpretability. Firstly, they provide a
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more holistic view of the model’s decision-making process by iden-
tifying important concepts or features that influence the model’s
output [15]. This results in a broader perspective that allows users
to better understand the model’s behavior. Secondly, concept-based
methods are context-independent, making it easier to compare ex-
planations across different instances and generalize insights gained
from them [31]. They also produce more comprehensible explana-
tions by identifying important features or concepts that contribute
to the model’s decision. Lastly, concept-based methods are more
robust to noise and perturbations (RQ1) in the input data, compared
to local explanations, which can vary depending on the specific
subset of data being analyzed. Therefore, a potential avenue for
future exploration involves incorporating concept-based explana-
tions while taking into account the unique characteristics of the
RecSys graph data. Building upon the ideas presented in [15], our
focus will be on extracting frequently occurring motifs or subgraph
patterns from the input data. Additionally, we will consider struc-
tural attributes such as node degree or centrality measures, which
provide insights into the significance of nodes within the graph.
Through this RQ we will address the second gap introduced earlier.

3.3 RQ3: How to effectively and efficiently
identify significant subgraphs for
explaining the GNNs?

Various recent research endeavors that have devised explanation
methods for GNNs, consistently emphasize the interpretability as-
pects at the levels of nodes, edges, or node features [29, 44, 53].
However, the inclusion of subgraphs is typically approached in-
directly through the incorporation of regularization terms. More-
over, explanations at the subgraph level are deemed more intuitive
and valuable, as subgraphs serve as fundamental building blocks
within complex graphs and are closely tied to the graph’s func-
tionalities [56]. Subgraph analysis entails the identification and
examination of smaller subgraphs within a larger graph. By focus-
ing on these more manageable subgraphs, valuable insights can be
obtained regarding the underlying data processing mechanisms of
the GNN. [53, 56]. Current subgraph explainability methods have
optimization task that maximizes the mutual information between
a GNN’s prediction and distribution of possible subgraph structures
that is intractable so they use approximate methods that leads to
a local minimum. To address this limitation, our strategy involves
employing iterativemagnitude pruning through loss landscape anal-
ysis of the graph training to capture more accurate and explainable
subgraphs . The Iterative Magnitude Pruning (IMP) algorithm [9] is
a cutting-edge technique that can discover extremely sparse match-
ing subnetworks, referred to as "winning tickets", which can be
retrained from an early stage or the initialization phase. IMP func-
tions through successive cycles of training, whereby a proportion of
the smallest magnitude weights are masked, the unmasked weights
are reset to a prior training epoch, and the process is repeated.
Additionally, inspired by [33] we hypothesize that we can use the
same approach to find the optimal value which in this case will be
most informative subgraph, in a more efficient way. One impor-
tant consideration when applying iterative magnitude pruning to
GNNs is that the graph structure may change after pruning. There-
fore, it is important to re-estimate the adjacency matrix and other

graph representations after each pruning iteration. Additionally,
the pruning process should be carefully tuned to ensure that the
pruned graph retains its important structural properties and does
not become disconnected or lose important information. Through
this RQ we will address the third gap introduced earlier.

3.4 RQ4: How can Shapley Value be effectively
integrated into GNN recommenders to
enhance their interpretability and
performance?

Shapley Value (SV) [39] is a concept in cooperative game theory that
measures the contribution of each player in a coalition game. SV
provides a way to distribute the payoff of a coalition game among
the players fairly, based on their individual contributions. Recently,
SV has attracted a lot of attention in ML community. Various re-
searches have demonstrated the effectiveness of SV on capturing
the fair contribution of feature/nodes of a graph [6] which can also
be considered for subgraphs as described in RQ3. SV have proven
to be effective also in finding important neurons for backdoor de-
fense towards adversarial attacks [17] which could be potentially
used to link this approach to RQ1. Wang et al. [45] have used shap-
ley value to build bidirectional associations between neurons and
hierarchical concepts to explains whether and how the neurons
learn the high-level hierarchical relationships of concepts which
directly connects the importance of SV for RQ2. It is our assertion
that there exists a need for heightened attention to be paid towards
the comprehensive incorporation of the Shapley value (SV) in ma-
chine learning model interpretability, through the exploration of
distributional Shapley approaches [14]. Drawing from the work of
Ghorbani and Kousathanas [14], we intend to pursue a more univer-
sal approach to model explanation, by factoring in the influence of
graph nodes and features through a distribution over their Shapley
values. This approach aims to increase the flexibility of the model’s
interpretability towards the addition of new nodes in the network.
By means of this research question, we intend to investigate the
fourth identified gap that was presented in the introduction.

4 CONCLUSION AND NEXT STEPS
In this paper, we conducted a comprehensive analysis of recent
advancements in explainable GNN-based RecSys and identified sev-
eral noteworthy concerns and research gaps within the context of
an ongoing PhD project. With the aim of making substantive contri-
butions to this domain, we have formulated research inquiries and
are committed to addressing them through thorough and rigorous
investigations.
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