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ABSTRACT
Music emotion recognition (MER) seeks to understand the complex emotional land-
scapes elicited by music, acknowledging music’s profound social and psychological
roles beyond traditional tasks such as genre classification or content similarity. MER
relies heavily on high-quality emotional annotations, which serve as the foundation
for training models to recognize emotions. However, collecting these annotations is
both complex and costly, leading to limited availability of large-scale datasets for MER.
Recent efforts in MER for automatically extracting emotion have focused on learning
track representations in a supervised manner. However, these approaches mainly use
simplified emotion models due to limited datasets or a lack of necessity for sophisti-
cated emotion models and ignore hidden inter-track relations, which are beneficial in
a semi-supervised learning setting. This paper proposes a novel approach to MER by
constructing a multi-relational graph that encapsulates different facets of music. We
leverage graphneural networks tomodel intricate inter-track relationships and capture
structurally induced representations from user data, such as listening histories, gen-
res, and tags. Our model, the semi-supervised multi-relational graph neural network
for emotion recognition (SRGNN-Emo), innovates by combining graph-based model-
ing with semi-supervised learning, using rich user data to extract nuanced emotional
profiles from music tracks. Through extensive experimentation, SRGNN-Emo demon-
strates significant improvements in R2 and root mean squared error metrics for pre-
dicting the intensity of nine continuous emotions (Geneva Emotional Music Scale),
demonstrating its superior capability in capturing and predicting complex emotional
expressions in music.
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1 INTRODUCTION

Music’s ability to express and evoke emotions is a univer-
sally acknowledged phenomenon, transcending cultural
and linguistic barriers. It plays a pivotal role in human
experience, offering a medium through which emotions
can be articulated, shared, and understood. This unique
capacity of music to convey a wide range of emotional
states makes it a subject of considerable interest in the
interdisciplinary fields of psychology, neuroscience, and
musicology (Jia et al., 2021; Zentner et al., 2008). In
particular, music emotion recognition (MER) is a com-
putational task aimed at automatically identifying the
emotional expressions contained within music or the
emotions elicited in listeners by music (Yang and Chen,
2011). MER researchers rely on a collection of datasets,
where the amount of annotated tracks per dataset is
rather small (Aljanaki et al., 2017; Zhang et al., 2018).
This is unsurprising since collecting high-quality emo-
tional annotations of tracks is complex and expensive
(Strauss et al., 2024).While small-scale datasets are valu-
able for MER advancements (Laurier et al., 2009), for
music retrieval and recommendation tasks, it is inevitable
to have access to a large catalog of tracks annotated
with emotion labels, especially in the context of personal-
ized music retrieval (Yang, 2021). An alternative method
for gathering emotional data in music involves extract-
ing emotions from user tags. These tags are readily
accessible and available on a large scale. However, they
often contain noise and personal bias, and they also lack
the depth and quality that set apart expert-annotated
data. Such expert data are typically collected through
user studies informed by psychological principles (Laurier
et al., 2009; Moscati et al., 2024).

There are several approaches to MER, aiming to tag
tracks with corresponding emotion labels or profiles. Tex-
tual information is one of the data types employed in
assignments that incorporate emotion labels, as evi-
denced by numerous studies (Hu et al., 2009; Hu and
Downie, 2010; Zad et al., 2021). Specifically, when under-
taking emotion recognition based on music data, lyrics
frequently serve as the primary source of input (Choi et al.,
2018; da Silva et al., 2022). A different body of research
highlights the significant role of acoustic features in emo-
tion recognition tasks (Gómez-Cañón et al., 2021; Panda
et al., 2020; Yang, 2021; Yang et al., 2008). This perspec-
tive sheds light on the complexity of musical emotion,
suggesting that the emotional content of music cannot
be fully captured through lyrics alone. The recognition
that both modalities, textual and acoustic, play a critical
role in the perception and interpretation of musical emo-
tions is well known in the scientific community (Gómez-
Cañón et al., 2021; Rajan et al., 2021; Xue et al., 2015).

Most of the aforementioned approaches perform clas-
sification for emotion labels per track or employ basic or
categorical emotion models (e.g., arousal and valence)

in a supervised learning setting, often failing to capture
the richness and variability of musical emotions (da Silva
et al., 2022; Yang, 2021). In contrast, this work draws
on a domain-specific model devised to account for the
richness of emotions induced by music (Zentner et al.,
2008). Starting with 515 emotion terms, Zentner et al.
(2008) have successively eliminated those terms that
were rarely used to describe music-evoked emotions and
retained a few dozen core emotion terms, titled GEMS
for Geneva Emotional Music Scale. GEMS is hierarchi-
cally organized into three second-order and nine first-
order factors, as shown in Figure 1. These factors are
(1) vitality (power and joyful activation); (2) sublim-
ity (wonder, transcendence, tenderness, nostalgia, and
peacefulness); and (3) unease (tension and sadness).
An additional distinctive feature of GEMS is that it
accounts not only for perceived emotion but also, and
in particular, for induced emotions, as was later shown
by neuroimaging work (Trost et al., 2012). Consequently,
a MER approach based on this model can capitalize on
a rich spectrum of music-specific emotional information
(Aljanaki et al., 2014).

As mentioned earlier, the number of tracks in MER
datasets is limited due to the scalability challenges
associated with the annotation process. This limitation
impacts the ability of supervised learning approaches to
generalize effectively across a vast track catalog, as the
availability of annotated data directly influences model
performance. Semi-supervised learning, on the other
hand, allows us to effectively incorporate information of
unlabeled tracks as well as labeled ones in the learning
process, leading to enriched track embeddings for the
final labeling task. Moreover, prior works often ignore user
and trackmeta-data, which could be used to improve the
learning process.

In this paper, we propose a novel framework employ-
ing the semi-supervised multi-relational graph neural
network for emotion recognition (SRGNN-Emo) for pre-
dicting the emotion profiles of tracks. We define the
emotion profile of a music track as the set and inten-
sity of emotions that the track evokes in listeners (Kim
et al., 2010; Strauss et al., 2024). Unlike traditional MER
approaches, our model advances the field by adopt-
ing a multi-target regression strategy, aiming to cap-
ture more accurately the broad spectrum of emotions
sparked through music. Building upon the premise that
human listening behaviors encapsulate a wealth of infor-
mation about evoked emotions, we innovate by integrat-
ing semi-supervised learning with human annotations
and a multi-relational graph framework. This integration
allows us to exploit the rich, albeit underutilized, data
from user interactions, genres, and tags, hypothesizing
that such data, when structured into diverse graph for-
mats and refined by a semi-supervised learning frame-
work, induce valuable emotion-related information. Our
framework can predict emotional intensities across
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nine dimensions, significantly enhancing the emotional
insights derived from track embeddings compared to tra-
ditional methods that typically rely on fewer, music–non-
specific emotion dimensions such as valence and
arousal.

Our approach not only aims tomitigate the limitations
imposed by the scarcity of large, annotated datasets
but also introduces a novel perspective on using multi-
relational graph structures to enrich track representa-
tions. To summarize, the main technical contributions of
our work are as follows:

• We propose a novel multi-relational graph structure,
based on user interactions, genres, and tags.

• We integrate a semi-supervised learning approach for
multi-target regression into the framework of graph
neural networks (GNNs).

• We use a high-quality dataset based on state-of-the-
art psychological research into music-evoked
emotions for fine-grained MER (Strauss et al., 2024).

• Extensive experiments show that our proposed model
significantly outperforms state-of-the-art
competitors on the task of MER.

To ensure reproducibility, we will release the code of our
experiments and model weights on GitHub.¹

2 RELATED WORK AND BACKGROUND

2.1 MUSIC EMOTION RECOGNITION
MER aims to understand and categorize emotions in
music through computational means. Key contributions
to this field address the different facets of music and
emotion, proposing various methodologies for recogni-
tion and analysis (Yang and Chen, 2011). Kim et al. (2010)
have presented a comprehensive overview of MER, intro-
ducing a computational framework that generalizes
emotion recognition from categorical domains to a two-
dimensional space defined by valence and arousal, facili-
tating novel emotion-basedmusic retrieval and organiza-
tionmethods. Other works (Choi et al., 2018; Panda et al.,
2020; Xue et al., 2015; Zad et al., 2021) have also empha-
sized the role of integrating lyrics, chord sequences,
and genre metadata alongside audio features,
demonstrating how multifaceted approaches can signif-
icantly enhance MER systems’ accuracy.

The development of MER has also been propelled
by the creation of extensive datasets and embeddings
tailored for this purpose—for instance, the MuSe dataset
(Akiki and Burghardt, 2021), which includes 90,000 tracks
annotated with arousal, valence, and dominance values
inferred from tags. Moreover, works by Alonso-Jiménez
et al. (2023), Bogdanov et al. (2022), and Castellon et al.
(2021) have evaluated various audio embeddings, includ-
ing Jukebox and musicnn embeddings, for their effec-
tiveness in MER tasks. Additionally, recent evaluations of
state-of-the-artmusic audio embeddings have been con-
ducted using tasks such as theMediaEval challenge series
on Emotion and Theme Recognition in Music (Tovstogan
et al., 2021) applied to the MTG-Jamendo mood/theme
auto-tagging dataset (Bogdanov et al., 2019).

Advances in MER research have also been charac-
terized by the development of novel features and the
design of sophisticated machine learning models. Bhatti
et al. (2016) have shown the effectiveness of using phys-
iological signals, specifically via electroencephalography,
to recognize emotions elicited by different music gen-
res, highlighting the potential of brain signals in provid-
ing insights into emotional responses to music. Panda
et al. (2018) have improved music emotion classifica-
tion by introducing highly emotionally relevant audio
features related to music performance expressive tech-
niques or musical texture. The application of deep learn-
ing techniques has shown promising results in recogniz-
ing emotions from music, as seen in the work by Zhang
et al. (2023); these authors have extracted features from
log-Mel spectrograms by using multiple parallel convolu-
tional blocks and applied attention in combination with
a sequence learning model for dynamic music emotion
prediction. Others have proposed structuringmusical fea-
tures from different modalities (audio and lyrics) over a
heterogeneous network to incorporate different modali-
ties in a unique space for MER (da Silva et al., 2022).

Our proposed approach, SRGNN-Emo, innovates by
leveraging semi-supervised learning with user interac-
tion data and metadata for nuanced emotional profiles,
extending beyond traditional supervised methods.

2.2 SEMI-SUPERVISED NODE REPRESENTATION
LEARNING
Node representation learning is focused on creating sim-
plified vector representations of a graph’s nodes that

Figure 1 The Geneva Emotion Music Scale with nine dimensions based on the factor analysis in the work of Zentner et al. (2008).
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reflect both their connections and features. Traditional
methods (without deep learning) are mostly based on
random walks to examine the neighborhoods around
nodes (Grover and Leskovec, 2016; Perozzi et al., 2014;
Tang et al., 2015).

GNNs are neural architectures specifically tailored for
graph-structured data. GNNs learn meaningful node rep-
resentations by iteratively aggregating and transforming
informationfromanode’sneighbors,effectivelycapturing
complex relational and structural dependencies in graphs
(Hamilton et al., 2017; Kipf and Welling, 2017). Since the
introduction of graph convolutional networks (GCNs) (Kipf
and Welling, 2017; Velickovic et al., 2018), a specific type
of GNNs,more advanced techniques for node embedding
havebeendeveloped, includingalayersamplingalgorithm
(Hamilton et al., 2017) designed toworkwith large graphs
by focusing on a set neighborhood of nodes.

Recently, we have observed a shift toward self-
supervised contrastive approaches. These methods dis-
tinguish between positive (similar neighborhood) and
negative (far away in the graph) examples to compute
loss. A deep graph infomax (DGI) (Velickovic et al., 2019)
enhances the mutual information between individual
nodes and the whole graph representations. Hassani and
Ahmadi (2020) have introduced a method for learning
representations from different viewpoints by contrast-
ing nearby neighbor encodings with those from a more
extensive graph diffusion. However, because contrastive
learning often requires a significant number of negative
examples, it can be challenging to scale for large graphs.
An alternative proposed by Thakoor et al. (2021) named
bootstrapped graph latents (BGRLs) avoids this issue by
predicting alternative augmentations of the input, elimi-
nating the need for contrasting with negative samples.

Despite significant advances in node representa-
tion learning, relatively little attention has been given
to multi-relational GNNs and their application in spe-
cific domains like MER. Existing works such as those by
Schlichtkrull et al. (2018), who proposed the concept
of relational graph convolutional networks (R-GCNs) for
knowledge graph completion, andVashishth et al. (2020),
who explored compositional embeddings for relation-
ships, have made strides in handling complex relational
structures. However, these approaches have not been
widely explored within the context of semi-supervised
learning. Additionally, although semi-supervised node
representation learning has become increasingly popu-
lar in tasks such as node classification and link prediction
(Hamilton et al., 2017; Kipf and Welling, 2017), its appli-
cation to emotion recognition tasks remains rare and
under-investigated (Horner et al., 2013).

In this paper, we present an innovative framework
that not only alignswith recent trends toward contrastive
learning in GNNs but also extends them by specifi-
cally addressing themulti-relational and semi-supervised
nature of the problem space in MER.

3 DATASET

In this work, we leveraged high-quality data from
psychology-informed user studies on emotions evoked
by music. We used the Emotion-to-Music Mapping Atlas
(EMMA)² database (Strauss et al., 2024), which contains
817 music tracks. These tracks were last annotated in
2023 based on their emotional impact, as assessed using
GEMS (Zentner et al., 2008). We focused on the GEMS-9
variant of this scale, which is a checklist version of the
original 45-itemGEMS that assesses each dimensionwith
one item only. Previous research has demonstrated emo-
tion profiles derived from the original GEMS and GEMS-9
to be highly correlated (Jacobsen et al., 2024). Emotions
induced by each track were rated on these dimensions
by an average of 28.76 annotators. We are one of the
first to leverage this information-rich dataset for MER pur-
poses, demonstrating the significant potential it offers for
advancing research in this field. To enhance the reliability
of our analyses, we restricted our focus to tracks with a
higher interrater agreement, selecting those with an intr-
aclass correlation coefficient (ICC) above 0.5, which indi-
cates moderate reliability (Strauss et al., 2024). While a
higher ICC thresholdwould ensure even greater reliability,
it would significantly reduce the dataset size, thereby lim-
iting the diversity and generalizability of the data. How-
ever, it is worth mentioning that the ICC across all tracks
demonstrates good interrater agreement, with a mean
ICC value of 0.8.

As our goal was to design a model for large-scale
emotion recognition in a semi-supervised manner, we
required a dataset containing not only rich information
about the audio but also relevant meta-data. There-
fore, we employed the Music4All-Onion (Moscati et al.,
2022) dataset. This dataset enhances theMusic4All (San-
tana et al., 2020) dataset by incorporating 26 addi-
tional audio, video, and metadata characteristics for
109,269 music pieces. It also includes 252,984,396 lis-
tening records from 119,140 Last.fm³ users, enabling the
use of user–item interactions. Intersecting EMMA with
the Music4All-Onion dataset led to 509 tracks with avail-
able emotion profiles, audio features, and meta infor-
mation. Due to our hypothesis that human listening
behavior in combination with track metadata encapsu-
lates valuable information about evoked emotions, we
extracted graph structures from user listening sessions,
track genres, and user tags, as described in detail in
Section 4.1.

For each track available in the Music4All-Onion
dataset, we used pretrained instances of musicnn (Pons
and Serra, 2019), MAEST (Alonso-Jiménez et al., 2023),
and Jukebox (Dhariwal et al., 2020) to represent the
audio signals. The musicnn model is based on deep
convolutional neural networks trained to classify music
based on its content (Pons and Serra, 2019). The MAEST
representations are based on spectrogram-based audio
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transformers, which employ patchout training on a
supervised task (Alonso-Jiménez et al., 2023). Jukebox is
a generative model for music that uses a deep neural
network trained on a vast corpus of tracks to understand
and generate music (Dhariwal et al., 2020).4 These mod-
els were selected for their music-specific design, which
ensures closer alignment with musical features such as
melody, harmony, and rhythm that are critical for emo-
tion recognition (Moscati et al., 2025).5

4 PROPOSED METHOD (SRGNN-EMO)

In this section, we introduce a novel framework lever-
aging a multi-relational graph structure and semi-
supervised learning. Multi-relational graphs are complex
data structures that model different types of relations
that correspond to different user data types in our case
(e.g., Figure 2). Our model is designed to extract emo-
tional profiles from music tracks by integrating rich user
interaction datawith diversemetadata and sophisticated
content data. Figure 2 provides an overview of our pro-
posed approach, where each module will be explained in
the following.

4.1 MULTI-RELATIONAL GRAPH CONSTRUCTION
We sought to derive representations of tracks that
encapsulate nuanced similarities between music tracks,
based on shared genres, commonality in listening ses-
sions, and user-assigned tags. Therefore, we constructed
a multi-relational graph G, focusing on tracks as nodes,

with edges representing different types of relationships,
such as sessions, genres, or tags, that connect these
tracks. Specifically, nodes in our multi-relational graph
are tracks v ∈ V, and an edge (vi, v j) ∈ E is established
between two tracks if they are part of the same listening
session by a user, share one or multiple genres, or have
been tagged with one or multiple identical tags by users.
The strength of the connection, represented as the edge
weight e(r)i j , reflects the frequency of shared relationships
r ∈ R, such as the number of common tags, genres, or
sessions. We normalized the edge weights per relation
such that, for each track v and each relation r, the edge
weights can be symmetrically scaled using the formula:

ẽ(r)i j = e(r)i j

√deg(vi) · deg(v j) ,
wheredeg(v) represents thedegreeofnodev for relation r.
This symmetric normalization ensures that, for each track
vandeach relation r, the edgeweights areadjustedbased
on the degrees of both connected nodes and therefore
mitigates the inherent popularity bias of tracks.

4.2 EMOTION-BASED GRAPH ENCODER
To learn node representations on the multi-relational
graph G introduced before, we employed a weighted
relational GCN (wR-GCN) encoder, which adapts the
GNN message-passing framework to handle the com-
plexities of a multi-relational graph (Schlichtkrull et al.,
2018) and additionally incorporates edge weights. The
GNN message-passing framework (Gilmer et al., 2017)

via

via

wR-GCN

Encoder

Desiigner

Panda

DMX
X Gon' Give It

To Ya
Gorillaz

Feel good Inc.

Lady Gaga

Pokerface

Outkast

Ms. Jackson

Katie Perry

I Kissed A Girl

Post Malone

Congratulations
wR-GCN

Encoder

shared

Original Multi-Relational Graph

no labels

no labels

MLP

Regressor

tag

Emotion Pattern

Clustering

k-NN

k-NN

genre

session

Multi-Relational Graph Construction

no labels

no labels

loss-related flow

data-related flow

emotion profile

Figure 2 Illustration of SRGNN-Emo which constructs a multi-relational graph with nodes representing tracks and edges symbolizing
connections based on sessions, genres, or user tags shared among tracks. We used stochastic graph augmentations to generate two
distinct graph views, which were processed by a shared encoder to ensure robust and invariant node representations in a
self-supervised manner. Emotion-guided consistency objective (ℒEG) optimization aimed to align unlabeled nodes with emotion
profile patterns of labeled nodes across augmented graph views. The learned node representations were then fed into a multi-layer
perceptron regressor to predict the emotion profile of each track.
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enables nodes to exchange and integrate information
with their neighbors, iteratively refining their represen-
tations to capture the graph’s structural and relational
context. The general differentiable message passing is
formulated as:

h(l+1)
i = 𝜎 ( ∑

m∈ℳi

gm (h(l)
i ,h(l)

j )) , (1)

where h(l)
i ∈ R

d(l) represents the hidden state of node vi

at the l-th layer, with d(l) being the dimensionality of the
layer’s representation. The incoming messages, gm(·, ·),
are combined and processed through an activation func-
tion𝜎(·), suchas ReLU.ℳi is the set of incomingmessages
for node vi, typically corresponding to the set of incoming
edges. The function gm(·, ·) is often a neural network or a
simple linear transformation (Kipf and Welling, 2017).

This transformation has proven effective in accu-
mulating and encoding features from local, structured
neighborhoods (Kipf and Welling, 2017; Velickovic et al.,
2018). For our multi-relational, weighted graph, we
defined a simple propagation model (Schlichtkrull et al.,
2018) for computing the forward-pass update of a node
vi and extended it with the usage of edge weights:

h(l+1)
i = 𝜎 (∑

r∈R ∑j∈𝒩r
i

1|𝒩r
i |W(l)

r h(l)
j e

(r)
i j +W(l)

0 h(l)
i e(r)ii ) , (2)

where𝒩r
i represents the set of neighbors of node vi under

relation r ∈ R, and e(r)i j is the edge weight between nodes
vi and v j for relation r. This equation intuitively accu-
mulates the transformed feature vectors of neighboring
nodes through a weighted and normalized sum. Unlike
regular GCNs, we herein incorporated relation-specific
transformations, depending on the type and direction of
the edge. Additionally, to ensure that the node’s repre-
sentation at layer l+1 is informed by its representation at
layer l, we introduced a self-connection under each rela-
tion type for each node.

Initially, h0
v = xv, representing the node features.

We used the corresponding representations of the tracks
(e.g., musicnn, MAEST, or Jukebox) as the node features
X ∈ R

N×F, whereN is the number of nodes in the graph and
F is the feature dimension. We defined 𝒩(v, r) as a uni-
formly sampled neighborhood across all relations r ∈ R to
managememory and computation effectively (Hamilton
et al., 2017).

4.3 SEMI-SUPERVISED MULTI-TARGET
REGRESSION
Contrastive learning has been shown to be a valuable
paradigm for self-supervised learning and consistency
regulation in the context of GNNs (Lee et al., 2022;
Thakoor et al., 2021). We employed this idea as the
grounding learning task for our graph-based model and
extended it with a semi-supervised loss in the process.

Given an input graph, we can generate two distinct
graph views through stochastic graph augmentations.
These augmentations involve randomly masking differ-
ent node features and dropping a different subset of
edges per graph to introduce variability. The resulting
augmented graph views are denoted by G̃ = (Ã, X̃) and
G̃′ = (Ã′, X̃′), where Ã and Ã′ represent the adjacency
matrices of the augmented graphs and X̃ and X̃′ denote
the feature matrices post-augmentation, respectively.

4.3.1 Representation learning via shared encoder
To learn robust, low-dimensional node-level representa-
tions, we employed a shared encoder strategy that learns
consistent representations across different graph aug-
mentations. Both augmented graph views were input
into our shared wR-GCN encoder, denoted as f 𝜃 ∶ R

N×N ×
R

N×F → R
N×D, to learn low-dimensional node-level rep-

resentations. The node-level representations obtained
from the encoder for the two views are f 𝜃(Ã, X̃) = Z̃ ∈
R

N×D and f 𝜃(Ã′, X̃′) = Z̃′ ∈ R
N×D, respectively.

To ensure the learned node representations are invari-
ant to the augmentations, SRGNN-Emo minimizes the
cosine distance between the representations from the
two differently augmented views on a node-wise basis
and is formalized as follows:

ℒSelf = 1
N

N∑
i=1

Z̃i · Z̃′i∥Z̃i∥∥Z̃′i ∥ (3)

In their experiments, Lee et al. (2022) have found that
using a single shared encoder in combination with sub-
sequent supervisory signals was sufficient to prevent rep-
resentation collapse, while also offering the benefits of
simplicity and efficiency.

4.3.2 Emotion-guided consistency objective
While our framework effectively leverages self-
supervised learning signals—patterns and features
extracted from unlabeled data without explicit
supervision—through contrastive learning, it had
yet to incorporate the limited but accessible emotion
profiles available for tracks. To leverage emotion label
information effectively, we refined our method by align-
ing tracks with emotion profile patterns. Starting with a
set of labeled tracks with known emotion profiles, we
identified distinct emotion patterns through clustering,
which then served as reference points (centroids) in
the emotion profile space. Our goal was to group the
unlabeled tracks around these centroids, ensuring their
predicted emotion profiles remain consistent across
differently augmented views of the graph. By doing so,
we aimed to maximize the consistency and reliability of
node assignments to these emotion patterns, effectively
bridging the gap between labeled and unlabeled tracks.

Given the set of labeled tracks, denoted as VL, we
applied a k-means clustering algorithm to extract K
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distinct clusters, each representing aunique emotion pat-
tern. The result was a set of centroids C = {c1, c2, . . . , cK},
where each ck ∈ R

1×9 corresponds to the centroid of
cluster k. These nine dimensions correspond to the
emotional dimensions defined by GEMS, which serve
as the basis for clustering. For each unlabeled track
vul, we computed the predicted emotion profile using
a non-parametric weighted k-nearest neighbors (k-NN)
approach to generate pseudo-labels, formulated as:

pi = ∑
j∈NNk(Hi) sim(Hi,HS

j ) · YS
j

∑
j∈NNk(Hi) sim(Hi,HS

j ) , (4)

where sim(·, ·) computes the cosine similarity between
two vectors; HS ∈ R

N×D and YS ∈ R
L×9 denote the support

(labeled) node representations and the emotion profiles,
respectively; and NNk(Hi) denotes the set of Kneighbors near-
est neighbors of Hi in HS.

To enhance reliability, we restricted the k-NN predic-
tions to only confident pseudo-labels by measuring the
distance between each pseudo-label and the centroid
C. We retained nodes whose predicted profile showed a
similarity above a threshold 𝜇 with at least one centroid,
forming the set Vcon f . The emotion-guided consistency
objective could then be defined as:

ℒEG = 1|Vcon f | ∑
vi∈Vcon f

MSE(p̃i, p̃′
i ), (5)

where MSE(·, ·) denotes the mean squared error (MSE)
loss function and p̃i and p̃′

i are the confidently predicted
emotion profiles for track vi from the augmented graphs.
Using a high value for 𝜇 prioritizes confident pseudo-
labels in the objective function, which has been shown to
effectively mitigate confirmation bias (Arazo et al., 2020;
Lee et al., 2022).

This approach not only incorporates label information
to guide the learning of emotion profile patterns but also
ensures that predictions for unlabeled tracks are made
with greater confidence, thereby improving the overall
model’s ability to generalize from labeled to unlabeled
data in the context of a multi-target regression task.

4.3.3 Emotion profile prediction
After learning robust node representations through the
shared wR-GCN encoder and ensuring consistency across
augmented graph views, the final task of SRGNN-Emo is
to predict the emotion profile for each music track. To
achieve this, we used a multi-layer perceptron (MLP) ℛ(·)
that takes as input the averaged node representations
from the two augmented views and outputs the emotion
profile per node/track. TheMLP consists of three fully con-
nected layers, each followed by a LeakyReLU activation
function and a dropout layer to prevent overfitting. The
output of the MLP is a vector, ŷi ∈ R

9, representing the
predicted emotion intensities across the nine emotion

categories. To train the model to predict nine continuous
emotion dimensions, we employed an MSE loss as our
supervised objective:

ℒSuper = 1
N

N∑
i=1

1
9
∥yi − ŷi∥2 (6)

4.4 FINAL OBJECTIVE
The combined objective function for SRGNN-Emo is
expressed as:

ℒ = 𝛼ℒSelf + 𝛽ℒEG + ℒSuper (7)

where 𝛼 and 𝛽 are coefficients that control the contri-
bution of the self-supervised loss ℒSelf and the emotion-
guided loss ℒEG to the overall training objective, respec-
tively. The supervised loss ℒSuper ensures the model
effectively predicts continuous emotion profiles for
labeled nodes.

5 EXPERIMENTS AND RESULTS

We compared SRGNN-Emo against traditional and graph-
based baselines for MER. In the following, we detail our
experimental setup, including data preparation, model
configurations, and metrics used for evaluation.

5.1 BASELINES
We systematically compared our proposed model
against a diverse array of baseline approaches, span-
ning traditional machine learning models, graph-based
approaches, and a novel custom convolutional neural
network, each harnessing unique feature representations
from music analysis frameworks.

We began with traditional machine learning mod-
els, including logistic regression (LR) and support vec-
tor regression (SVR). Additionally, co-training regres-
sion (COREG) (Zhou and Li, 2005) was used, enhancing
generalization by co-training two regressors on separate
views. An MLP model with three layers (similar to our
SRGNN-Emo model) served a dual purpose: it depicted
a baseline on its own and acted as the regressor for
semi-supervised learning tasks in the graph-based mod-
els (with the learned node representations as input).

Graph-basedmodels are crucial for understanding the
relational structure of music data. This category includes
label propagation (LP) (Zhu and Ghahramani, 2002) for
emphasizing data clustering, GCNs (Kipf and Welling,
2017) and graph attention networks (GATs) (Velickovic
et al., 2018) for integrating node features with the
graph topology, DGIs (Velickovic et al., 2019) focusing on
mutual information maximization, and BGRL representa-
tion (Thakoor et al., 2021) aimedat enhancing robustness
through consistent node representation across views.
MRLGCN (da Silva et al., 2022) structuresmusical features
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over a heterogeneous network and learns a multi-modal
representation using a GNN with features extracted from
audio and lyrics for MER.

Completing our set of baselines, we designed a fully
supervised, content-based, end-to-end method named
DOMR+ for density-based oversampling for multivariate
regressionwith data transformation. The DOMR+method
consists of two components: a fully convolutional net-
work model and a pre-processing stage. The model
employs multiple convolutional and sub-sampling layers
without dense layers. To address the challenges of data
scarcity and imbalance in the labels, the pre-processing
stage integrates oversampling with data transforma-
tion techniques. Candidate data points for oversam-
pling were identified using kernel density estimation,
which determines the rarity of data points based on
their density within the feature space. Instead of directly
oversampling these candidates, the method applies
class-preserving audio transformations, which minimally
transforms the original audio while retaining its funda-
mental properties, including filtering, equalizing, noise
addition, scale changes (pitch shifting and time stretch-
ing), distortions, quantization, dynamic compression, for-
mat encoding/decoding (e.g., MP3, GSM), and reverbera-
tion (Mignot and Peeters, 2019). These transformations
ensure that the augmented data remain representative
of the underlying distribution, enhancing the model’s
ability to generalize, while avoiding the risk of overfitting
caused by repetitive synthetic samples.

5.2 EXPERIMENTAL SETUP
We preprocessed the target variables representing emo-
tions by applying z-normalization, which ensures each
variable has a mean of 0 and a standard deviation of 1.
We employed stratified 10-fold cross-validation based on
binning to validate the performance of our models com-
prehensively.

For performance evaluation, we relied on two met-
rics: root mean squared error (RMSE) and coefficient of
determination (R2). RMSE measures the average magni-
tude of the errors between the predicted and actual val-
ues. A lower RMSE indicates better performance. R2, on
the other hand, is a goodness-of-fit measure for regres-
sion models and assesses the proportion of variance in
the dependent variable that is predictable from the inde-
pendent variables, with values closer to 1 indicating bet-
ter model fit.

All baseline models were carefully tuned via grid
search, optimizing hyperparameters including (but not
limited to) the number of layers ∈ {1, . . . ,5}, number
of neighbors ∈ {5,10, . . . ,50}, learning rate, dropout,
and regularization strength, depending on the respective
model requirements. For our proposed model, SRGNN-
Emo, the Adam optimizer (Kingma and Ba, 2015) was
used, with the learning rate set to 0.001 and L2

regularization set to 10−5. We tuned its hyperparame-
ters within specific ranges: the number of layers L in the
wR-GCN was set between 1 and 5, the number of neigh-
bors was chosen from between 5 and 50, and the 𝛼
and 𝛽 weight parameters were logarithmically adjusted
within the range of 0.1–10. Additionally, dropout rates
were varied between 0.0 and 0.5 to prevent overfitting.
The number of clusters K and nearest-neighbors Kneighbors

were searched in {2,4,6, . . . ,16} and {5,10,20,40}, corre-
spondingly.

5.3 PERFORMANCE ANALYSIS
Table 1 summarizes the multi-target regression perfor-
mance of various models, including traditional machine
learning methods, graph-based models, and our pro-
posed SRGNN-Emo framework. The results demonstrate
that SRGNN-Emo achieves the lowest RMSE and highest
R2 score, indicating superior prediction performance (sta-
tistically significant) and model fit, respectively.

Representing traditional machine learning
approaches, LR, SVR, and COREG show relatively higher
RMSE values, indicating lower predictive performance.
Their R2 values are also significantly lower, confirming
less variance explained by these models. The base-
line MLP shows competitive performance when relying
on musicnn representations, but it is outperformed by
graph-based approaches with the other two representa-
tions (MAEST and Jukebox).

Among the graph-based approaches, DGI and BGRL
show competitive performancewith the lowest RMSE and
highest R2 among the graph-based models for two dif-
ferent representations, ranked second after our SRGNN-
Emo.GCNandGATalsodemonstraterobustperformances
but are slightly outperformed by DGI or BGRL, depending
on the underlying representation. Meanwhile, our model,
SRGNN-Emo, outperforms all baseline models and indi-
cates a statistically significant improvement in terms of
RMSE and R2 compared to the second-best models, DGI
and BGRL.

5.4 ABLATION STUDY
The ablation study, detailed in Table 2, assessed the
impact of individual components of SRGNN-Emo by
removing ℒSelf, ℒEG, and ℒSuper separately. The results
illustrate the essential roles of these components in
the model’s overall performance. Removing the self-
supervised loss (ℒSelf) slightly increased the RMSE across
five out of nine emotional dimensions, suggesting that
this component helps to stabilize the learning process by
enforcing consistent node representations across differ-
ent graph augmentations. The removal of the emotion-
guided consistency objective (ℒEG) led to a noticeable
degradation in performance across eight out of nine
emotional dimensions. This confirms that ℒEG plays a
crucial role in refining node embeddings by aligning
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musicnn MAEST Jukebox

Model

Rep.

RMSE↓ (±SE) R2↑ (±SE) RMSE↓ (±SE) R2↑ (±SE) RMSE↓ (±SE) R2↑ (±SE)
LR 0.8443 (±0.02) 0.2470 (±0.05) 1.3821 (±0.06) -1.0731 (±0.22) 1.0301 (±0.04) -0.1403 (±0.09)
SVR 0.8188 (±0.01) 0.2968 (±0.01) 0.7862 (±0.01) 0.3504 (±0.02) 0.9802 (±0.02) 0.0163 (±0.01)
COREG 0.8742 (±0.02) 0.1140 (±0.05) 0.8613 (±0.02) 0.1346 (±0.08) 0.8680 (±0.02) 0.1244 (±0.05)
MLP 0.8132 (±0.02) 0.3106 (±0.02) 0.8938 (±0.03) 0.1576 (±0.08) 0.8579 (±0.02) 0.2193 (±0.06)
LP† 0.9488 (±0.03) 0.0806 (±0.01) 0.9488 (±0.03) 0.0806 (±0.01) 0.9488 (±0.03) 0.0806 (±0.01)
GCN 0.8071 (±0.02) 0.3158 (±0.04) 0.7781 (±0.02) 0.3568 (±0.05) 0.7492 (±0.04) 0.4039 (±0.05)
GAT 0.8167 (±0.03) 0.2992 (±0.07) 0.7856 (±0.02) 0.3476 (±0.05) 0.7567 (±0.02) 0.3926 (±0.03)
DGI 0.8042 (±0.02) 0.3184 (±0.06) 0.7749 (±0.01) 0.3644 (±0.06) 0.7464 (±0.02) 0.4103 (±0.04)
BGRL 0.8019 (±0.02) 0.3253 (±0.05) 0.7939 (±0.02) 0.3370 (±0.07) 0.7905 (±0.02) 0.3843 (±0.05)
MRLGCN 0.8592 (±0.04) 0.2600 (±0.04) 0.7868 (±0.03) 0.3648 (±0.05) 0.7932 (±0.03) 0.3651 (±0.05)
DOMR+† 0.8291 (±0.03) 0.2777 (±0.08) 0.8291 (±0.03) 0.2777 (±0.08) 0.8291 (±0.03) 0.2777 (±0.08)
SRGNN-Emo 0.7973 (±0.03) 0.3305 (±0.06) 0.7707 (±0.01) 0.3724 (±0.05) 0.7411 (±0.02) 0.4180 (±0.04)

Table 1 Multi-target regression performance for different models across three representation types. The best results are in boldface
and the second-best results are underlined. All improvements of SRGNN-Emo compared to the second-best performing model are
significant (Wilcoxon signed-rank test, p < 0.05). Models marked with † do not use any underlying track representation.

Model wond tran tend nost peace joya power sadn tens GEMS-9

MLP (musicnn) 0.9312 0.9653 0.7330 0.8936 0.6466 0.8099 0.8007 0.7711 0.7675 0.8132

DGI (Jukebox) 0.9059 0.9425 0.6647 0.8094 0.6088 0.7162 0.7511 0.6627 0.6569 0.7464

SRGNN-Emo (Jukebox) 0.8972 0.9345 0.6518 0.8026 0.6162 0.6930 0.7425 0.6690 0.6630 0.7411

(A) w/o ℒSelf 0.9177 0.9384 0.6532 0.8192 0.6086 0.7050 0.7653 0.6713 0.6829 0.7513

(B) w/o ℒEG 0.9041 0.9387 0.6636 0.8245 0.6110 0.7082 0.7650 0.6845 0.6779 0.7530

(C) w/o ℒSuper 1.2372 1.0996 1.2454 1.2210 1.3543 1.3329 1.2424 1.2907 1.2339 1.2508

Table 2 RMSE scores of models (using the best-performing representations from Table 1) across multiple emotion targets. Abbrevi-
ations of emotion dimensions correspond to wonder, transcendence, tenderness, nostalgia, peacefulness, joyful activation, power,
sadness, and tension. All improvements of the best-performingmodels (boldface) are statistically significant compared to the second-
best models (underline) per emotion dimension (Wilcoxon signed-rank test, p < 0.05).
them more closely with known emotion profile patterns,
thus enhancing the model’s ability to generalize from
labeled to unlabeled data. Omitting the supervised loss
(ℒSuper) results in significant performance drops across
all emotional dimensions, with RMSE scores rising sub-
stantially. This drastic decline highlights the importance
of direct supervision in guiding the network toward
accurate emotion profile predictions. Interestingly,
while DGI outperformed SRGNN-Emo in two emotional
dimensions—sadness and tension—it did not achieve
consistently better performance across all emotion
dimensions, indicating limitations in its ability to
fully capture the emotional variations present in the
dataset.

5.5 IMPACT OF HYPER-PARAMETERS
In this section, we investigate the impact of different
hyper-parameters. We focus on the number of layers L in
the wR-GCN and the number of emotion profile clusters
K, since these hyper-parameters are related to various
parts of the model architecture. Figure 3 shows the per-
formance of our model with different settings of layers L
on the described dataset usingmusicnn representations.
A higher number of layers in the multi-relational net-
work does not necessarily lead to an increase in perfor-
mance due to the issue of over-smoothing, where node
representations converge to the same values (Chen and
Wong, 2020; Kipf and Welling, 2017). For our dataset, we
could find a sweet spot layer setting L of 2.
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Figure 3 Performance impact of different number of layers L in our wR-GCN component.

Figure 4 Performance impact of different number of emotion profile clusters K.

Figure 4 shows the performance differences between
runs relying on musicnn representations with a different
number of emotion profile clusters. The best-performing
setting for K was 10 clusters, which aligns with previous
analyses of emotion profiles in GEMS-9 by Chełkowska-
Zacharewicz and Janowski (2021).

5.6 DATA EFFICACY STUDY
In this section, we assess the efficacy of our pro-
posed SRGNN-Emo framework under varying levels of
training data availability, investigating its performance
in semi-supervised settings where labeled data are
sparse. Figure 5 illustrates themodel performances using
different ratios of the training data, comparing the

SRGNN-Emo framework with baseline models, including
the baseline MLP and the semi-supervised graph-based
approach DGI.

The results show that, as the amount of avail-
able labeled data increases, the performance of the
MLP model significantly improves, exhibiting lower RMSE
and higher R2 values. This highlights its heavy reliance
on large amounts of labeled data for generalization.
In contrast, the semi-supervised models demonstrate
superior performance even with minimal labeled data.
Specifically, our SRGNN-Emo model maintains competi-
tive RMSE scores and high R2 values across various frac-
tions of the training data, showing only a gradual decline
in prediction accuracy as the training set size reduces.
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Figure 5 Model performances on different fractions of training data using Jukebox representations.

This indicates the model’s robustness in scenarios with
limited labeled data.

6 CONCLUSION

This work introduced SRGNN-Emo, a novel semi-
supervised multi-relational GNN designed for nuanced
MER trained on EMMA, a database with exceptionally rig-
orous annotations based on the domain-specific GEMS
emotion model. By integrating semi-supervised learning
with multi-relational graph structures and leveraging
rich user interaction data, SRGNN-Emo effectively out-
performed baseline models in capturing the complex
emotional responses evoked by music. While our study
leverages the GEMS model to capture a wide range
of music-evoked emotions, our framework remains
inherently flexible and can be adapted to alternative
emotion models as future work. As a contribution, we
enriched the existing Music4All-Onion dataset (Moscati
et al., 2022) by adding emotion labels generated from
our trained model, resulting in a fully labeled large-
scale emotion-based dataset with 109,269 tracks. This
enhanced dataset enables various applications, such as
improved music retrieval, enhanced recommendation
systems, and other related tasks.
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NOTES

1. https://github.com/dbis-uibk/SRGNN-Emo

2. https://musemap-tools.uibk.ac.at/emma/

3. https://www.last.fm

4. ForMAEST, embeddingswere extracted from transformer block 7 of the
model, initializedwith PaSSTweights, and pre-trained on theDiscogs20
dataset. For Jukebox, embeddings were extracted from layer 36, with
mean pooling applied across the layer’s output, following themethod-
ology detailed in the original work.

5. This extended version of the dataset, including audio embeddings
extracted from thedescribed pre-trainedmodels (musicnn,MAEST, and
Jukebox), is made publicly available on https://zenodo.org/records/15
394646.
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