Andreas Peintner

Andreas Peintner, Msc.

andreas.peintner [at] uibk.ac.at
Scientific Staff
Tel: +43 512 507 53472
Office
Office ICT building, 2nd floor, room 3S01
Consultation Hours
by arrangement

Publications

2024

Bib Link

Marta Moscati, Hannah Strauß, Peer-Ole Jacobsen, Andreas Peintner, Eva Zangerle, Marcel Zentner and Markus Schedl: Emotion-Based Music Recommendation from Quality Annotations and Large-Scale User-Generated Tags. In Proceedings of the 32nd ACM Conference on User Modeling, Adaptation and Personalization, pages 159–164. Association for Computing Machinery, 2024

2023

Bib Link Download

Andreas Peintner: Sequential Recommendation Models: A Graph-based Perspective. In Proceedings of the 17th ACM Conference on Recommender Systems, RecSys 2023, Singapore, Singapore, September 18-22, 2023, pages 1295-1299. ACM, 2023

Bib Link Download

Andreas Peintner, Amir Reza Mohammadi and Eva Zangerle: SPARE: Shortest Path Global Item Relations for Efficient Session-based Recommendation. In Proceedings of the 17th ACM Conference on Recommender Systems, RecSys 2023, Singapore, Singapore, September 18-22, 2023, pages 58-69. ACM, 2023

2022

Bib Link Download

Andreas Peintner, Marta Moscati, Emilia Parada-Cabaleiro, Markus Schedl and Eva Zangerle: Unsupervised Graph Embeddings for Session-based Recommendation with Item Features. In CARS: Workshop on Context-Aware Recommender Systems (RecSys ’22). 2022

2021

Bib Link Download

Maximilian Mayerl, Michael Vötter, Andreas Peintner, Günther Specht and Eva Zangerle: Recognizing Song Mood and Theme: Clustering-based Ensembles. In Working Notes Proceedings of the MediaEval 2021 Workshop. ceur-ws.org, 2021